960 resultados para Plant-herbivore interactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of indirect interactions in structuring communities is becoming increasingly recognised. Plant fungi can bring about changes in plant chemistry which may affect insect herbivores that share the same plant, and hence the two may interact indirectly. This study investigated the indirect effects of a fungal pathogen (Marssonina betulae) of silver birch (Betula pendula) on an aphid (Euceraphis betulae), and the processes underpinning the interaction. There was a strong positive association between natural populations of the aphid and leaves bearing high fungal infection. In choice tests, significantly more aphids settled on leaves inoculated with the fungus than on asymptomatic leaves. Individual aphids reared on inoculated leaves were heavier, possessed longer hind tibiae and displayed enhanced embryo development compared with aphids reared on asymptomatic leaves; population growth rate was also positively correlated with fungal infection when groups of aphids were reared on inoculated branches. Changes in leaf chemistry were associated with fungal infection with inoculated leaves containing higher concentrations of free-amino acids. This may reflect a plant-initiated response to fungal attack in which free amino acids from the degradation of mesophyll cells are translocated out of infected leaves via the phloem. These changes in plant chemistry are similar to those occurring during leaf senescence, and are proposed as the mechanistic basis for the positive interaction between the fungus and aphid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolomics as the study of the entire set of metabolites of a given organism is an important frontier in life sciences. As a tool that captures the ‘front end’ of cellular machineries, metabolomics is particularly suited to investigate biotic interactions, including for instance the interplay between plants and insects. In this review, we discuss the opportunities and challenges of metabolomics to study plant–herbivore interactions. We first present a brief overview of the typical analytical workflows used in metabolomics and their associated issues, in particular those related to metabolome coverage and compound identification. Second, recent advances in the field of plant–herbivore relationships that are promoted by non-targeted approaches are reviewed, with examples ranging from classical herbivore resistance patterns to plant-mediated interactions across different spatial scales and volatile-mediated tritrophic interactions. Through general considerations and the discussion of a few selected case studies, our review highlights the potential and challenges of metabolomics as a research approach to understand biological interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current research into indirect phytopathogen–herbivore interactions (i.e., interactions mediated by the host plant) is carried out in two largely independent directions: ecological/mechanistic and molecular. We investigate the origin of these approaches and their strengths and weaknesses. Ecological studies have determined the effect of herbivores and phytopathogens on their host plants and are often correlative: the need for long-term manipulative experiments is pressing. Molecular/cellular studies have concentrated on the role of signaling pathways for systemic induced resistance, mainly involving salicylic acid and jasmonic acid, and more recently the cross-talk between these pathways. This cross-talk demonstrates how interactions between signaling mechanisms and phytohormones could mediate plant–herbivore–pathogen interactions. A bridge between these approaches may be provided by field studies using chemical induction of defense, or investigating whole-organism mechanisms of interactions among the three species. To determine the role of phytohormones in induced resistance in the field, researchers must combine ecological and molecular methods. We discuss how these methods can be integrated and present the concept of “kaleidoscopic defense.” Our recent molecular-level investigations of interactions between the herbivore Gastrophysa viridula and the rust fungus Uromyces rumicis on Rumex obtusifolius, which were well studied at the mechanistic and ecological levels, illustrate the difficulty in combining these different approaches. We suggest that the choice of the right study system (possibly wild relatives of model species) is important, and that molecular studies must consider the environmental conditions under which experiments are performed. The generalization of molecular predictions to ecologically realistic settings will be facilitated by “middle-ground studies” concentrating on the outcomes of the interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Plants interact with many organisms, such as microbes and herbivores, and these interactions are likely to affect the establishment and spread of plants. In the context of plant invasions, mycorrhizal fungi and constitutive and induced resistance of plants against herbivores have received attention independently of each other. However, plants are frequently involved in complex multi-trophic interactions, which might differ between invasive and non-invasive alien plants. 2. In a multi-species comparative experiment, we aimed to improve our understanding of plant traits associated with invasiveness. We tested whether eight invasive alien plant species use the mycorrhizal symbiosis in a more beneficial way, and have higher levels of constitutive or induced resistance against two generalist bioassay herbivores, than nine non-invasive alien species. We further assessed whether the presence of mycorrhizal fungi altered the resistance of the plant species, and whether this differed between invasive and non-invasive alien species. 3. While invasive species produced more biomass, they did not differ in their biomass response to mycorrhizal fungi from non-invasive alien species. Invasive species also did not have higher levels of constitutive or induced resistance against the two generalist herbivores. Mycorrhizal fungi greatly affected the resistance of our plant species, however, this was also unrelated to whether the alien species were invasive or not. 4. Our study confirms the previous findings that invasive species generally grow faster and produce more biomass than non-invasive alien species. We further show that alien plant species used a variety of defence strategies, and also varied in their interactions with mycorrhizal fungi. These multi-trophic interactions were not consistently related to invasiveness of the alien plant species. 5. We suggest that awareness of the fact that alien plant species are involved in multi-trophic interactions might lead to a more complete understanding of the factors contributing to a plant's success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induced changes in plant quality can mediate indirect interactions between herbivores. Although the sequence of attack by different herbivores has been shown to influence plant responses, little is known about how this affects the herbivores themselves. We therefore investigated how induction by the leaf herbivore Spodoptera frugiperda influences resistance of teosinte (Zea mays mexicana) and cultivated maize (Zea mays mays) against root-feeding larvae of Diabrotica virgifera virgifera. The importance of the sequence of arrival was tested in the field and laboratory. Spodoptera frugiperda infestation had a significant negative effect on colonization by D. virgifera larvae in the field and weight gain in the laboratory, but only when S. frugiperda arrived on the plant before the root herbivore. When S. frugiperda arrived after the root herbivore had established, no negative effects on larval performance were detected. Yet, adult emergence of D. virgifera was reduced even when the root feeder had established first, indicating that the negative effects were not entirely absent in this treatment. The defoliation of the plants was not a decisive factor for the negative effects on root herbivore development, as both minor and major leaf damage resulted in an increase in root resistance and the extent of biomass removal was not correlated with root-herbivore growth. We propose that leaf-herbivore-induced increases in feeding-deterrent and/or toxic secondary metabolites may account for the sequence-specific reduction in root-herbivore performance. Synthesis. Our results demonstrate that the sequence of arrival can be an important determinant of plant-mediated interactions between insect herbivores in both wild and cultivated plants. Arriving early on a plant may be an important strategy of insects to avoid competition with other herbivores. To fully understand plant-mediated interactions between insect herbivores, the sequence of arrival should be taken into account. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant‐mediated interactions between herbivores are important determinants of community structure and plant performance in natural and agricultural systems. Current research suggests that the outcome of the interactions is determined by herbivore and plant identity, which may result in stochastic patterns that impede adaptive evolution and agricultural exploitation. However, few studies have systemically investigated specificity versus general patterns in a given plant system by varying the identity of all involved players. We investigated the influence of herbivore identity and plant genotype on the interaction between leaf‐chewing and root‐feeding herbivores in maize using a partial factorial design. We assessed the influence of leaf induction by oral secretions of six different chewing herbivores on the response of nine different maize genotypes and three different root feeders. Contrary to our expectations, we found a highly conserved pattern across all three dimensions of specificity: The majority of leaf herbivores elicited a negative behavioral response from the different root feeders in the large majority of tested plant genotypes. No facilitation was observed in any of the treatment combinations. However, the oral secretions of one leaf feeder and the responses of two maize genotypes did not elicit a response from a root‐feeding herbivore. Together, these results suggest that plant‐mediated interactions in the investigated system follow a general pattern, but that a degree of specificity is nevertheless present. Our study shows that within a given plant species, plant‐mediated interactions between herbivores of the same feeding guild can be stable. This stability opens up the possibility of adaptations by associated organisms and suggests that plant‐mediated interactions may contribute more strongly to evolutionary dynamics in terrestrial (agro)ecosystems than previously assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing temperatures resulting from climate change have within recent years been shown to advance phenological events in a large number of species worldwide. Species can differ in their response to increasing temperatures, and understanding the mechanisms that determine the response is therefore of great importance in order to understand and predict how a warming climate can influence both individual species, but also their interactions with each other and the environment. Understanding the mechanisms behind responses to increasing temperatures are however largely unexplored. The selected study system consisting of host plant species of the Brassicaceae family and their herbivore Anthocharis cardamines, is assumed to be especially vulnerable to climatic variations. Through the use of this study system, the aim of this thesis is to study differences in the effect of temperature on development to start of flowering within host plant species from different latitudinal regions (study I), and among host plant species (study II). We also investigate whether different developmental phases leading up to flowering differ in sensitivity to temperature (study II), and if small-scale climatic variation in spring temperature influence flowering phenology and interactions with A. cardamines (study III). Finally, we investigate if differences in the timing of A. cardamines relative to its host plants influence host species use and the selection of host individuals differing in phenology within populations (study IV). Our results showed that thermal reaction norms differ among regions along a latitudinal gradient, with the host plant species showing a mixture of co-, counter- and mixed gradient patterns (study I). We also showed that observed differences in the host plant species order of flowering among regions and years might be caused by both differences in the distribution of warm days during development and differences in the sensitivity to temperature in different phases of development (study II). In addition, we showed that small-scale variations in temperature led to variation in flowering phenology among and within populations of C. pratensis, impacting the interactions with the butterfly herbivore A. cardamines. Another result was that the less the mean plant development stage of a given plant species in the field deviated from the stage preferred by the butterfly for oviposition, the more used was the species as a host by the butterfly (study IV). Finally, we showed that the later seasonal appearance of the butterflies relative to their host plants, the higher butterfly preference for host plant individuals with a later phenology, corresponding to a preference for host plants in earlier development stages (study IV). For our study system, this thesis suggest that climate change will lead to changes in the interactions between host plants and herbivore, but that differences in phenology among host plants combined with changes in host species use of the herbivore might buffer the herbivore against negative effects of climate change. Our work highlights the need to understand the mechanisms behind differences in the responses of developmental rates to temperature between interacting species, as well as the need to account for differences in temperature response for interacting organisms from different latitudinal origins and during different developmental phases in order to understand and predict the consequences of climate change. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a new approach to modeling grazing systems that links foraging characteristics (intake and digestive constraints) with resource dynamics via the probability of encounter with different grass heights. Three complementary models are presented: the generation of a grass height structure through selective grazing; investigating the conditions for consumer coexistence; and, using a simplified resource structure, the consequences for consumer abundance. The main finding is that coexistence between grazers differing in body size is possible if a single-resource type becomes differentiated in its height structure. Large grazers can facilitate food availability for smaller species but with the latter being competitively dominant. The relative preference given to different resource partitions is important in determining the nature of population interactions. Large-body and small-body grazer populations can interact through competitive, parasitic, commensalist, or amensalist relationships, depending on the way they partition the resource as well as their relative populations and the dynamics of resource renewal. The models provide new concepts of multispecies carrying capacity (stock equilibrium) in grazed systems with implications for conservation and management. We conclude that consumer species are not substitutable; therefore, the use of rangeland management concepts such as "livestock units" may be inappropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared properties of roots from different lines (genotypes) of tobacco raised either in tissue culture or grown from seed. The different lines included unmodified plants and plants modified to express reduced activity of the enzyme cinnamoyl-CoA reductase, which has a pivotal role in lignin biosynthesis. The size and structure of the rhizosphere microbial community, characterized by adenosine triphosphate and phospholipid fatty acid analyses, were related to root chemistry (specifically the soluble carbohydrate concentration) and decomposition rate of the roots. The root material from unmodified plants decomposed faster following tissue culture compared with seed culture, and the faster decomposing material had significantly higher soluble carbohydrate concentrations. These observations are linked to the larger microbial biomass and greater diversity of the rhizosphere communities of tissue culture propagated plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have compared properties of roots from different lines (genotypes) of tobacco raised either in tissue culture or grown from seed. The different lines included unmodified plants and plants modified to express reduced activity of the enzyme cinnamoyl-CoA reductase, which has a pivotal role in lignin biosynthesis. The size and structure of the rhizosphere microbial community, characterized by adenosine triphosphate and phospholipid fatty acid analyses, were related to root chemistry (specifically the soluble carbohydrate concentration) and decomposition rate of the roots. The root material from unmodified plants decomposed faster following tissue culture compared with seed culture, and the faster decomposing material had significantly higher soluble carbohydrate concentrations. These observations are linked to the larger microbial biomass and greater diversity of the rhizosphere communities of tissue culture propagated plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Restoration schemes aimed at enhancing plant species diversity of improved agricultural grassland have been a key feature of agri-environmental policy since the mid 1980s. Allied to this has been much research aimed at providing policy makers with guidelines on how best to manage grassland to restore botanical diversity. This research includes long-term studies of the consequences for grassland diversity of management techniques such as different hay cut dates, fertiliser additions, seed introductions and grazing regimes. Studies have also explored the role of introductions of Rhinanthus minor into species-poor swards to debilitate competitive grasses. While these studies have been successful in identifying some management features that control plant species diversity in agricultural grassland, they have taken a largely aboveground perspective on plant community dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies.