965 resultados para Plant species - climate interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

  作为西部大开发的关键地区,西北干旱区由于地理位置和环境条件的独特性、生态系统的脆弱性以及人类活动的长期干扰,对其周边乃至全国的生态环境有较大的影响,在这一地区研究植物种分布与气候的关系,并模拟预测其可能的潜在分布范围,具有理论上和实践上的重要意义。   通过广泛收集了西北干旱区优势种和常见种的地理分布资料,共选择128个植物种,利用Holdridge的生命地带分类系统,计算各植物种的生物温度(BT)、可能蒸散(PE)、降水量(P)及可能蒸散率(PER),分析植物种与气候的相互关系,并将所有植物种进行经验归纳分类。随后,对这砦植物种及其气候信息进行TWINSPAN定量分类,并与经验分类结果相比较,得出西北干旱区128种植物的生态气候分类,分属于以下几大类型:高寒草甸、森林一草原过渡带、草原(典型草原、荒漠草原)、荒漠(草原化荒漠、荒漠、高寒荒漠)。具体来说,包括以下17个生态气候类型: 1)高寒草甸:异针茅。 2)森林一草原过渡带:牛尾蒿、鬼箭锦鸡儿、沙棘。 3)草原a:沙蒿。 4)草原b:长芒草、百里香(变种)、多叶隐子草、贝加尔针茅、大针茅。 5)草原c:羊茅、小叶锦鸡儿、荒漠锦鸡儿、线叶菊、华北岩黄芪、廿青针茅、碱蒿、内蒙古沙蒿、裂叶蒿、狭叶锦鸡儿、山竹岩黄芪、女蒿、小蓬、两伯利亚杏、沙地柏、角果碱篷、霸王、糙隐子草。 6)草原d:紫狐茅、紫花针茅。 7)草原一荒漠草原a:包括沙竹、琵琶柴、吉尔吉斯针茅。 8)草原一荒漠草原b:华北米蒿、差巴嘎蒿、星星草、长芒针茅、铁竿蒿、柠条锦鸡儿。 9)荒漠草原:沙生冰草、蒙古冰草、羊草、冷蒿、中亚紫菀木、刺旋花、老瓜头、木贼麻黄、西伯利亚白刺、唐古特白刺、戈壁针茅、石生针茅、盐地碱蓬、冰草、蓍状亚菊、油蒿、木蓼、刺针枝蓼、长枝木蓼、中间锦鸡儿、尖叶盐爪爪、黄花琵琶柴、松叶猪毛菜、珍珠猪毛菜、东方针茅、囊果碱蓬、四合木、白滨藜、短脚锦鸡儿。 10)草原化荒漠,荒漠a:川青锦鸡儿、优若藜、苦艾蒿、无芒隐子草、沙冬青、籽蒿、地白蒿、菭草、齿叶白刺、绵刺、盐角草、多枝柽柳、盐生假木贼。 11)草原化荒漠.荒漠b:蒿叶猪毛菜、短花针茅、芨芨草、灌木亚菊、博乐蒿、小蒿、喀什蒿、南山短花菊、盐爪爪、木本猪毛菜、针茅、细枝盐爪爪。 12)草原化荒漠.荒漠c:白梭梭、白羊草、无叶假木贼。 13)干旱荒漠a:戈壁短花菊、荒漠细柄茅、刺蓬、沙生针茅、多花柽柳、细枝柽柳。 14)干旱荒漠b:梭梭柴、铃铛刺、天山猪毛菜、帕米尔麻黄、座花针茅、旱蒿、克氏狐茅、短叶假木贼、准格尔沙蒿、长穗柽柳、刚毛柽柳。 15)高寒荒漠植被:匍生优若藜。 16)干旱荒漠c:粉花蒿、白杆沙拐枣、膜果麻黄、花花柴、灌木紫菀木、裸果木、合头草、塔里木沙拐枣。 17)超干旱荒漠植被:沙拐枣、胡杨、盐穗木、灰杨、盐节木、圆叶盐爪爪。   综合分类结果表明:多数植物种的生态气候类型与实际生境相符,但也有少数植物种有明显偏差,主要原因有三点:首先,某些种的分布范围超出了西北干旱区,在东北、华北、甚至全国范围内分布,所计算的植物种的气候范围本身存在局限性;其次,西北干旱区的研究资料如植物种的分布范围、分布点的气象资料等有许多缺失:最后,由于文献中对某些植物种分布范围的描述比较笼统,无法确定其精确的地理分布界限,使得植物种所对应的分类结果与其真正所属的植 被类型有一些偏差。   本文还进一步在这128种植物中选取了10种分布明确、资料齐备的代表性植被类型的优势种,根据它们的降水和生物温度指标,模拟预测了它们的可能潜在分布区,包括其主要中心分布区和最大可能分布区,并与实际分布范围进行比较。结果表明.其潜在分布区的分布范围与实际调查所得资料所处范围基本一致,特别是中心分布区的预测图,而最大可能分布区与实际有一定误差。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary theory suggests that divergent natural selection in heterogeneous environments can result in locally adapted plant genotypes. To understand local adaptation it is important to study the ecological factors responsible for divergent selection. At a continental scale, variation in climate can be important while at a local scale soil properties could also play a role. We designed an experiment aimed to disentangle the role of climate and ( abiotic and biotic) soil properties in local adaptation of two common plant species. A grass (Holcus lanatus) and a legume ( Lotus corniculatus), as well as their local soils, were reciprocally transplanted between three sites across an Atlantic-Continental gradient in Europe and grown in common gardens in either their home soil or foreign soils. Growth and reproductive traits were measured over two growing seasons. In both species, we found significant environmental and genetic effects on most of the growth and reproductive traits and a significant interaction between the two environmental effects of soil and climate. The grass species showed significant home site advantage in most of the fitness components, which indicated adaptation to climate. We found no indication that the grass was adapted to local soil conditions. The legume showed a significant home soil advantage for number of fruits only and thus a weak indication of adaptation to soil and no adaptation to climate. Our results show that the importance of climate and soil factors as drivers of local adaptation is species-dependent. This could be related to differences in interactions between plant species and soil biota.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Geographical, climatic and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. The aim of this study was to: (1) characterize patterns of beta diversity in global drylands; (2) detect common environmental drivers of beta diversity; and (3) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location Global. Methods Beta diversity was quantified in 224 dryland plant communities from 22 geographical regions on all continents except Antarctica using four complementary measures: the percentage of singletons (species occurring at only one site); Whittaker's beta diversity, β(W); a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites, β(R2); and a multivariate abundance-based metric, β(MV). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographical, climatic and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity percentage of singletons and β(W) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance (β(R2) and β(MV) were more associated with climate variability. Interactions among soil variables, climatic factors and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving c. 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate conservation strategies for mitigating effects of climate change on dryland vegetation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

• Premise of the study: Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments. • Methods: We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain’s slope and measured performance, reproductive, and phenological traits. • Results: Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values. • Conclusions: We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herbaceous and woody plants represent different fuel types in flammable ecosystems, due to contrasting patterns of growth and flammability in response to productivity (moisture availability). However, other factors, such as soil type, fire regimes and competitive interactions may also influence the relative composition of herbaceous and woody plants within a community. The Mediterranean climate region of south eastern Australia is transitional between two contrasting fuel systems; herbaceous dominated in the dry north, versus woody plant dominated shrublands in the relatively moist south. Across the rainfall gradient of the region, there are confounded changes in dominant soil types and fire frequency. We used model-subset selection using Akaike's Information Criterion to examine potential driving mechanisms of community compositional change from herbaceous (e.g. Triodia scariosa, Austrostipa sp.) to woody plants (e.g. Beyeria opaca, Leptospermum coriaceum, Acacia ligulata) by measuring relative cover across combinations of rainfall, time since the last fire (TSF) and soil type. We examined the relative influence of environmental versus competitive interactions on determining the cover of perennial hummock grass, T. scariosa, and co-occurring woody shrubs. Rainfall and soil types, rather than competition, were the over-arching determinants of the relative cover of grasses and shrubs. Given the sensitivity to rainfall, our results indicate there is strong potential for the nature of fuel, flammability and fire regimes to be altered in the future via climate change in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is led by scientists in conservation decision appraisal and brings together a group of experts working across the Lake Eyre Basin (LEB). The LEB covers a sixth of Australia, with an array of globally significant natural values that are threatened by invasive plants, among other things. Managers at various levels are investing in attempts to control, contain and eradicate these invasive plant species, under severe time and resources limitations. To date there has been no basin-wide assessment of which weed management strategies and locations provide the best investments for maximising outcomes for biodiversity per unit cost. Further, there has been no assessment of the extent of ecosystem intactness that may be lost without effective invasive plant species management strategies. Given that there are insufficient resources to manage all invasive plant species everywhere, this information has the potential to improve current investment decisions. Here, we provide a prioritisation of invasive plant management strategies in the LEB. Prioritisation was based on cost-effectiveness for biodiversity benefits. We identify the key invasive plant species to target to protect ecosystem intactness across the bioregions of the LEB, the level of investment required and the likely reduction in invasive species dominance gained per dollar spent on each strategy. Our focus is on strategies that are technically and socially feasible and reduce the likelihood that high impact invasive plant species will dominate native ecosystems, and therefore change their form and function. The outputs of this work are designed to help guide decision-making and further planning and investment in weed management for the Basin. Experts in weed management, policy-making, community engagement, biodiversity and natural values of the Basin, attended a workshop and agreed upon 12 strategies to manage invasive plants. The strategies focused primarily on 10 weeds which were considered to have a high potential for broad, significant impacts on natural ecosystems in the next 50 years and for which feasible management strategies could be defined. Each strategy consisted of one or more supporting actions, many of which were spatially linked to IBRA (Interim Biogeographical Regionalisation of Australia) bioregions. The first strategy was an over-arching recommendation for improved mapping, information sharing, education and extension efforts in order to facilitate the more specific weed management strategies. The 10 more specific weed management strategies targeted the control and/or eradication of the following high-impact exotic plants: mesquite, parkinsonia, rubber vine, bellyache bush, cacti, mother of millions, chinee apple, athel pine and prickly acacia, as well as a separate strategy for eradicating all invasive plants from one key threatened ecological community, the GAB (Great Artesian Basin dependant) mound springs. Experts estimated the expected biodiversity benefit of each strategy as the reduction in area that an invasive plant species is likely to dominate in over a 50-year period, where dominance was defined as more than 30% coverage at a site. Costs were estimated in present day terms over 50 years largely during follow up discussions post workshop. Cost-effectiveness was then calculated for each strategy in each bioregion by dividing the average expected benefit by the average annual costs. Overall, the total cost of managing 12 invasive plant strategies over the next 50 years was estimated at $1.7 billion. It was estimated that implementation of these strategies would result in a reduction of invasive plant dominance by 17 million ha (a potential 32% reduction), roughly 14% of the LEB. If only targeting Weeds of National Significance (WONS), the total cost was estimated to be $113 million over the next 50 years. Over the next 50 years, $2.3 million was estimated to eradicate all invasive plant species from the Great Artesian Basin Mound Springs threatened ecological community. Prevention and awareness programs were another key strategy targeted across the Basin and estimated at $17.5 million in total over 50 years. The cost of controlling, eradicating and containing buffel grass were the most expensive, over $1.5 billion over 50 years; this strategy was estimated to result in a reduction in buffel grass dominance of a million ha in areas where this species is identified as an environmental problem. Buffel grass has been deliberately planted across the Basin for pasture production and is by far the most widely distributed exotic species. Its management is contentious, having economic value to many graziers while posing serious threats to biodiversity and sites of high cultural and conservation interest. The strategy for containing and locally eradicating buffel grass was a challenge to cost based on expert knowledge, possibly because of the dual nature of this species as a valued pastoral grass and environmental weed. Based on our conversations with experts, it appears that control and eradication programs for this species, in conservation areas, are growing rapidly and that information on the most cost-effective strategies for this species will continue to develop over time. The top five most cost-effective strategies for the entire LEB were for the management of: 1) parkinsonia, 2) chinee apple, 3) mesquite, 4) rubber vine and 5) bellyache bush. Chinee apple and mother of millions are not WONS and have comparatively small populations within the semi-arid bioregions of Queensland. Experts felt that there was an opportunity to eradicate these species before they had the chance to develop into high-impact species within the LEB. Prickly acacia was estimated to have one of the highest benefits, but the costs of this strategy were high, therefore it was ranked 7th overall. The buffel grass strategy was ranked the lowest (10th) in terms of cost effectiveness. The top five most cost-effective strategies within and across the bioregions were the management of: 1) parkinsonia in the Channel Country, 2) parkinsonia in the Desert Uplands, 3) mesquite in the Mitchell Grass Downs, 4) parkinsonia in the Mitchell Grass Downs, and 5) mother of millions in the Desert Uplands. Although actions for several invasive plant species like parkinsonia and prickly acacia were concentrated in the Queensland part of the LEB, the actions involved investing in containment zones to prevent the spread of these species into other states. In the NT and SA bioregions of the LEB, the management of athel pine, parkinsonia and cacti were the main strategies. While outside the scientific research goals of study, this work highlighted a number of important incidental findings that led us to make the following recommendations for future research and implementation of weed management in the Basin: • Ongoing stakeholder engagement, extension and participation is required to ensure this prioritisation effort has a positive impact in affecting on-ground decision making and planning. • Short term funding for weed management was identified as a major reason for failure of current efforts, hence future funding needs to be secure and ongoing. • Improved mapping and information sharing is essential to implement effective weed management. • Due to uncertainties in the outcomes and impacts of management options, strategies should be implemented as part of an adaptive management program. The information provided in this report can be used to guide investment for controlling high-impact invasive plant species for the benefits of biodiversity conservation. We do not present a final prioritisation of invasive plant strategies for the LEB, and we have not addressed the cultural, socio-economic or spatial components necessary for an implementation plan. Cost-effectiveness depends on the objectives used; in our case we used the intactness of ecosystems as a surrogate for expected biodiversity benefits, measured by the extent that each invasive plant species is likely to dominate in a bioregion. When other relevant factors for implementation are considered the priorities may change and some actions may not be appropriate in some locations. We present the costs, ecological benefits and cost-effectiveness of preventing, containing, reducing and eradicating the dominance of high impact invasive plants through realistic management actions over the next 50 years. In doing so, we are able to estimate the size of the weed management problem in the LEB and provide expert-based estimates of the likely outcomes and benefits of implementing weed management strategies. The priorities resulting from this work provide a prospectus for guiding further investment in management and in improving information availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho é constituído por uma revisão bibliográfica e uma série de estudos científicos experimentais visando a melhoria do conhecimento da ecologia de germinação e resposta ao estresse hídrico em arbustos autóctones. Estes estudos pretendem contribuir para o conhecimento da ecologia de espécies autóctones na fase de germinação e estabelecimento inicial das plântulas através da comparação da resposta de sementes de diferentes proveniências. Os primeiros três capítulos focam-se no estudo dos efeitos de pré-tratamentos na germinação de espécies arbustivas com diferentes estratégias de regeneração e dormência da semente, enquanto os dois últimos capítulos incidem sobre o efeito de diferentes condições de disponibilidade de água na germinação e estabelecimento inicial de plântulas com potencial para restauro ecológico. Este estudo procura abordar aspetos importantes para o estudo e validação do uso de espécies alvo para o restauro ecológico em zonas Mediterrânicas, contribuindo deste modo para a melhoria do conhecimento da ecologia destas espécies. A germinação foi estimulada por pré-tratamentos de calor em quatro das cinco espécies cuja época de dispersão da semente na primavera-verão. As sementes provenientes do sul tenderam a germinar melhor, sendo ao mesmo tempo mais pequenas. Por outro lado, a germinação em espécies cuja dispersão da semente ocorre no outono-inverno variou de acordo com o tipo de dormência da semente. A germinação foi em geral favorecida pela estratificação a frio na espécie apresentando dormência fisiológica mas foi negativamente afetada na espécie que não apresenta dormência. Esta resposta não foi, no entanto, inequívoca pois foi dependente da proveniência estudada. O efeito da estratificação a frio teve em geral um efeito mais positivo ou menos negativo nas sementes provenientes do norte em comparação com as outras proveniências. O stress-osmótico teve um efeito negativo consistente na germinação de Pistacia lentiscus e outro fator que também afetou significativamente a germinação foi a variabilidade intra-populacional entre plantas mãe. As duas proveniências apresentaram diferentes graus de associação entre a germinação e/ou caracteres morfológicos da semente ou planta mãe. Quanto à fase de estabelecimento inicial, o baixo conteúdo em água teve um claro efeito negativo no investimento relativo em biomassa acima do solo e um efeito positivo no investimento relativo em biomassa abaixo do solo em Arbutus unedo. Esta resposta não foi inequívoca, uma vez que as proveniências diferiram em adaptações morfológicas ao baixo conteúdo em água. As plântulas da proveniência mais húmida revelaram uma taxa de crescimento relativo superior mas, ao mesmo tempo, uma fraca adaptação às condições de baixa disponibilidade de água, quando comparadas com as outras proveniências. Ao contrário, as plântulas da proveniência seca com verão mais quente apresentaram semelhantes diâmetro do colo da raiz, peso seco de folhas e performance fisiológica sob os dois regimes de irrigação. Os resultados obtidos revelam diferenças significativas na germinação e desenvolvimento inicial entre as distintas proveniências que poderão estar relacionadas com adaptações ao clima dos locais de origem. Os desenvolvimentos futuros do estudo dos mecanismos subjacentes às adaptações observadas poderiam contribuir para a melhoria das previsões de sucesso do estabelecimento inicial em diferentes populações de plantas, permitindo aumentar a confiança e efetividade de custos nas decisões relacionadas com ações de restauro ecológico em cenários de alterações climáticas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. When entomophilous plants are introduced to a new region, they may leave behind their usual pollinators. In particular, plant species with specialized pollination may then be less likely to establish and spread (i.e. become invasive). Moreover, other reproductive characteristics such as self-compatibility and flowering duration may also affect invasion success. 2. Here, we specifically asked whether plant species' specialization towards pollinator species and families, respectively, as measured in the native range, self-compatibility, flowering duration and their interactions are related to the degree of invasion (i.e. a measure of regional abundance) in non-native regions. 3. We used plant–pollinator interaction data from 119 German grassland sites to calculate unbiased indices of plant specialization towards pollinator species and families for 118 European plant species. We related these specialization indices, flowering duration, self-compatibility and their interactions to the degree of invasion of each species in seven large countries on four non-Eurasian continents. 4. In all models, plant species with long flowering durations had the highest degree of invasion. The best model included the specialization index based on pollinator species instead of the one based on pollinator families. Specialization towards pollinator species had a marginally significant positive effect on the degree of invasion in non-native regions for self-compatible, but not for self-incompatible species. 5. Synthesis. We showed that long flowering duration is related to the degree of invasion in other parts of the world, and a trend that pollinator generalization in the native range may interact with self-compatibility in determining the degree of invasion. Therefore, we conclude that such reproductive characteristics should be considered in risk assessment and management of introduced plant species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant species distributions are expected to shift and diversity is expected to decline as a result of global climate change, particularly in the Arctic where climate warming is amplified. We have recorded the changes in richness and abundance of vascular plants at Abisko, sub-Arctic Sweden, by re-sampling five studies consisting of seven datasets; one in the mountain birch forest and six at open sites. The oldest study was initiated in 1977-1979 and the latest in 1992. Total species number increased at all sites except for the birch forest site where richness decreased. We found no general pattern in how composition of vascular plants has changed over time. Three species, Calamagrostis lapponica, Carex vaginata and Salix reticulata, showed an overall increase in cover/frequency, while two Equisetum taxa decreased. Instead, we showed that the magnitude and direction of changes in species richness and composition differ among sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climatic conditions of mountain habitats are greatly influenced by topography. Large differences in microclimate occur with small changes in elevation, and this complex interaction is an important determinant of mountain plant distributions. In spite of this, elevation is not often considered as a relevant predictor in species distribution models (SDMs) for mountain plants. Here, we evaluated the importance of including elevation as a predictor in SDMs for mountain plant species. We generated two sets of SDMs for each of 73 plant species that occur in the Pacific Northwest of North America; one set of models included elevation as a predictor variable and the other set did not. AUC scores indicated that omitting elevation as a predictor resulted in a negligible reduction of model performance. However, further analysis revealed that the omission of elevation resulted in large over-predictions of species' niche breadths-this effect was most pronounced for species that occupy the highest elevations. In addition, the inclusion of elevation as a predictor constrained the effects of other predictors that superficially affected the outcome of the models generated without elevation. Our results demonstrate that the inclusion of elevation as a predictor variable improves the quality of SDMs for high-elevation plant species. Because of the negligible AUC score penalty for over-predicting niche breadth, our results support the notion that AUC scores alone should not be used as a measure of model quality. More generally, our results illustrate the importance of selecting biologically relevant predictor variables when constructing SDMs.