965 resultados para Plant resistande to insects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presumption that the synthesis of 'defence' compounds in plants must incur some 'trade-off' or penalty in terms of annual crop yields has been used to explain observed inverse correlations between resistance to herbivores and rates of growth or photosynthesis. An analysis of the cost of making secondary compounds suggests that this accounts for only a small part of the overall carbon budget of annual crop plants. Even the highest reported amounts of secondary metabolites found in different crop species (flavonoids, allylisothiocyanates, hydroxamic acids, 2-tridecanone) represent a carbon demand that can be satisfied by less than an hour's photosynthesis. Similar considerations apply to secondary compounds containing nitrogen or sulphur, which are unlikely to represent a major investment compared to the cost of making proteins, the major demand for these elements. Decreases in growth and photosynthesis in response to stress are more likely the result of programmed down-regulation. Observed correlations between yield and low contents of unpalatable or toxic compounds may be the result of parallel selection during the refinement of crop species by humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the reaction of ten sugarcane cultivars to Diatraea saccharalis under field conditions, using a randomized block design with treatments in factorial 2x10 with six replications. The first factor was represented by two levels of infestation (infested and not infested) by borer and the second one, by the ten sugarcane varieties (IAC87-3396, IAC91-1099, IACSP93-3046, IACSP94-2101, IACSP94-2094, IACSP94-4004, IACSP95-5000, IACSP96-3060, IACSP96-2042 and SP91-1115). The experiment was evaluated in two crop cycles: plant crop and first ratoon. All cultivars were attacked by the borer, being IACSP94-4004, IACSP96-2042 and SP91-1115 the most damaged cultivars with the highest infestation index. During the plant crop, plots infested by the borer presented higher fiber content than the ones not infested. During the first ratoon, non infested plants produced 10% less and presented lower purity and higher content of reducing sugars than the non-infested plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: Plants cannot run away to escape attacking herbivores, but they defend themselves by producing anti-digestive proteins and toxic compounds (for example glucosinolates). The first goal of this thesis was to study changes in gene expression after insect attack using microarrays. The responses of Arabidopsis thaliana to feeding by the specialist Pieris rapae and the generalist Spodoptera liffora is were compared. We found that the transcript profiles after feeding by the two chewing insects were remarkably similar, although the generalist induced a slightly stronger response. The second goal was to evaluate the implication of the four signals jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) in the control of insect-regulated gene expression. Using signaling mutants, we observed that JA was the predominant signal and that ABA modulated defense gene expression. In contrast, SA and ET appeared to control slightly gene expression, but only after feeding by S. litforalis. The third goal was to establish whether plant responses are really effective against insects. In accordance with the transcript profile, both insects were affected by the JA-dependent defenses, as they performed better on the JA-insensitive mutant. S. littoralis also performed better on ABA-deficient mutants, providing evidence for the role of ABA in defense against insects. When testing indole or aliphatic glucosinolate deficient mutants, we found that they were also more susceptible to insect feeding, providing some of the first genetic evidence for the defensive role of glucosinolates in planta. Finally, a glutathione-deficient mutant, pad2-1, was also more susceptible to insect feeding and we could attribute this phenotype to a lowered accumulation of the major indole glucosinolate. In this thesis, we provide a comprehensive list of insect-regulated genes, including many transcription factors that constitute interesting candidate genes for the further study of insect-induced expression changes. Understanding how the plant responses to insects are regulated will provide tools for a better management of insect pest in the field. Résumé: Les plantes ne peuvent s'échapper pour fuir les insectes qui les attaquent, mais elles se défendent en produisant des protéines anti-digestives et des composés toxiques (par exemple des glucosinolates). Le premier but de cette thèse était d'étudier les changements de l'expression génétique lors d'attaque par des insectes en utilisant des puces à ADN. Nous avons comparé la réponse d'Arabidopsis thaliana à deux espèces d'insectes avec des habitudes alimentaires différentes : le spécialiste Pieris rapae et le généraliste Spodoptera littoralis. Nous avons trouvé que les profils de transcription après l'attaque par les deux insectes sont remarquablement similaires, bien que le généraliste induise une réponse légèrement plus forte. Le deuxième but était de déterminer l'implication de quatre signaux dans le contrôle de la réponse :l'acide jasmonique (JA), l'acide salicylique (SA), l'éthylène (ET), et l'acide abscissique (ABA). En utilisant de mutants de signalisation, nous avons montré que l'acide jasmonique était le signal prédominant et que l'acide abscissique modulait l'expression génétique. D'autre part, l'acide salicylique et l'éthylène contrôlent à un degré moindre l'expression génétique, mais seulement après l'attaque par S. littoralís. Le troisième but était d'établir si les réponses des plantes sont efficaces contre les insectes. En accord avec le profil de transcription, les deux espèces d'insectes se sont mieux développées sur un mutant insensible au JA, indiquant que les défenses contrôlées par ce signal sont cruciales pour la plante. De plus, les larves de S. littorales se sont mieux développées sur des mutants déficients en ABA, ce qui fournit une preuve du rôle de l'acide abscissique dans la défense contre les insectes. En testant des mutants déficients en glucosinolates de type indole ou aliphatique, nous avons trouvé qu'ils étaient plus sensibles aux insectes, démontrant ainsi le rôle défensif des glucosinolates in planta. Finalement, le mutant déficient en glutathion pad2-1 était aussi plus sensible à l'attaque des insectes, et nous avons pu attribuer ce phénotype à une plus faible augmentation d'un indole glucosinolate dans ce mutant. Dans cette thèse, nous avons mis en évidence un nombre important de gènes contrôlés par les insectes, comprenant de nombreux facteurs de transcription qui constituent des candidats intéressants pour`étudier plus en détail les changements d'expression génétique induits par les insectes. Une meilleure compréhension de la réponse des plantes contre l'attaque des insectes devrait nous permettre de développer de nouvelles stratégies pour mieux gérer les ravageurs des cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An imminent food crisis reinforces the need for novel strategies to increase crop yields worldwide. Effective control of pest insects should be part of such strategies, preferentially with reduced negative impact on the environment and optimal protection and utilization of existing biodiversity. Enhancing the presence and efficacy of native biological control agents could be one such strategy. Plant strengthener is a generic term for several commercially available compounds or mixtures of compounds that can be applied to cultivated plants in order to ‘boost their vigour, resilience and performance’. Studies into the consequences of boosting plant resistance against pests and diseases on plant volatiles have found a surprising and dramatic increase in the plants' attractiveness to parasitic wasps. Here, we summarize the results from these studies and present new results from assays that illustrate the great potential of two commercially available resistance elicitors. We argue that plant strengtheners may currently be the best option to enhance the attractiveness of cultivated plants to biological control agents. Other options, such as the genetic manipulation of the release of specific volatiles may offer future solutions, but in most systems, we still miss fundamental knowledge on which key attractants should be targeted for this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insecticidal effect of six commercially available plant oils was tested against 4th larval instars of Culex pipiens. Larvae were originally collected from Meit El-Attar, Qalyubia Governorate, Egypt, and then reared in the laboratory until F1 generation. The LC50 values were 32.42, 47.17, 71.37, 83.36, 86.06, and 152.94 ppm for fenugreek (Trigonella foenum-grecum), earth almond (Cyperus esculentus), mustard (Brassica compestris), olibanum (Boswellia serrata), rocket (Eruca sativa), and parsley (Carum ptroselinum), respectively. The tested oils altered some biological aspects of C. pipiens, for instance, developmental periods, pupation rates, and adult emergences. The lowest concentrations of olibanum and fenugreek oils caused remarkable prolongation of larval and pupal durations. Data also showed that the increase of concentrations was directly proportional to reduction in pupation rates and adult emergences. Remarkable decrease in pupation rate was achieved by mustard oil at 1000 ppm. Adult emergence was suppressed by earth almond and fenugreek oils at 25 ppm. In addition, the tested plant oils exhibited various morphological abnormalities on larvae, pupae, and adult stages. Consequently, fenugreek was the most potent oil and the major cause of malformation of both larval and pupal stages. Potency of the applied plant oils provided an excellent potential for controlling C. pipiens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vigorous production of oxygenated fatty acids (oxylipins) is a characteristic response to pathogenesis and herbivory, and is often accompanied by the substantial release of small and reactive lipid-fragmentation products. Some oxylipins, most notably those of the jasmonate family, have key roles as potent regulators. Recent advances have been made in understanding oxylipin-regulated signal transduction in response to attack. Much jasmonate signaling takes place via a genetically defined signal network that is linked to the ethylene, auxin, and salicylic acid signal pathways, but a second aspect of jasmonate signaling is emerging. Some jasmonates and several newly discovered cyclopentenone lipids can activate or repress gene expression through the activities of a conserved electrophilic atom group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low phosphorus supply markedly limits leaf growth and genotypes able to maintain adequate leaf area at low P could adapt better to limited-P conditions. This work aimed to investigate the relationship between leaf area production of common bean (Phaseolus vulgaris) genotypes during early pod filling and plant adaptation to limited P supply. Twenty-four genotypes, comprised of the four growth habits in the species and two weedy accessions, were grown at two P level applied to the soil (20 and 80 mg kg-1) in 4 kg pots and harvested at two growth stages (pod setting and early pod filling). High P level markedly increased the leaf number and leaf size (leaf area per leaf), slightly increased specific leaf area but did not affect the net assimilation rate. At low P level most genotypic variation for plant dry mass was associated with leaf size, whereas at high P level this variation was associated primarily with the number of leaves and secondarily with leaf size, specific leaf area playing a minor role at both P level. Determinate bush genotypes presented a smaller leaf area, fewer but larger leaves with higher specific leaf area and lower net assimilation rate. Climbing genotypes showed numerous leaves, smaller and thicker leaves with a higher net assimilation rate. Indeterminate bush and indeterminate prostrate genotypes presented the highest leaf area, achieved through intermediate leaf number, leaf size and specific leaf area. The latter groups were better adapted to limited P. It is concluded that improved growth at low P during early pod filling was associated with common bean genotypes able to maintain leaf expansion through leaves with greater individual leaf area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential ecological impact of ongoing climate change has been much discussed. High mountain ecosystems were identified early on as potentially very sensitive areas. Scenarios of upward species movement and vegetation shift are commonly discussed in the literature. Mountains being characteristically conic in shape, impact scenarios usually assume that a smaller surface area will be available as species move up. However, as the frequency distribution of additional physiographic factors (e.g., slope angle) changes with increasing elevation (e.g., with few gentle slopes available at higher elevation), species migrating upslope may encounter increasingly unsuitable conditions. As a result, many species could suffer severe reduction of their habitat surface, which could in turn affect patterns of biodiversity. In this paper, results from static plant distribution modeling are used to derive climate change impact scenarios in a high mountain environment. Models are adjusted with presence/absence of species. Environmental predictors used are: annual mean air temperature, slope, indices of topographic position, geology, rock cover, modeled permafrost and several indices of solar radiation and snow cover duration. Potential Habitat Distribution maps were drawn for 62 higher plant species, from which three separate climate change impact scenarios were derived. These scenarios show a great range of response, depending on the species and the degree of warming. Alpine species would be at greatest risk of local extinction, whereas species with a large elevation range would run the lowest risk. Limitations of the models and scenarios are further discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selostus: Kasvien sopeutuminen lämpötilaan ja päivän pituuteen

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to analyze the agronomic performance and chromosomal stability of transgenic homozygous progenies of soybean [Glycine max (L.) Merrill.], and to confirm the resistance of these plants against Anticarsia gemmatalis. Eleven progenies expressing cry1Ac, hpt and gusA genes were evaluated for agronomic characteristics in relation to the nontransformed parent IAS 5 cultivar. Cytogenetical analysis was carried out on transgenic and nontransgenic plants. Two out of the 11 transgenic progenies were also evaluated, in vitro and in vivo, for resistance to A. gemmatalis. Two negative controls were used in resistance bioassays: a transgenic homozygous line, containing only the gusA reporter gene, and nontransgenic 'IAS 5' plants. The presence of cry1Ac transgene affected neither the development nor the yield of plants. Cytogenetical analysis showed that transgenic plants presented normal karyotype. In detached-leaf bioassay, cry1Ac plants exhibited complete efficacy against A. gemmatalis, whereas negative controls were significantly damaged. Whole-plant feeding assay confirmed a very high protection of cry1Ac against velvetbean caterpillar, while nontransgenic 'IAS 5' plants and homozygous gusA line exhibited 56.5 and 71.5% defoliation, respectively. The presence of cry1Ac transgene doesn't affect the majority of agronomic traits (including yield) of soybean and grants high protection against A. gemmatalis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aminocyclopyrachlor and indaziflam are under development in Brazil and there is no information about their behavior in Brazilian soils. This study aimed to evaluate the sensitivity of plant species to these new molecules, trying to select plants that can be used as bioindicators for testing the behavior of these herbicides in the soil. Two experiments were conducted, one for each herbicide. The treatments were arranged in a 8 x 6 factorial design, the factors being represented by eight species used as bioindicators cotton, maize, soybean, sorghum, sunflower, millet, cucumber and beet, and six doses of herbicides (aminocyclopyrachlor - 0, 10 , 20, 30 , 40 and 50 g ha-1 and indaziflam 0 , 20, 40 , 60, 80 and 100 g ha-1). Among the species studied, soybean and beet were quite sensitive to the two new herbicide molecules, being great alternatives for bioassays in order to detect low concentrations of aminocyclopyrachlor and indaziflam in the soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants encounter numerous pests and pathogens in the natural environment. An appropriate response to attack by such organisms can lead to tolerance or resistance mechanisms that enable the plant to survive. Many studies concentrate on the signalling pathways that enable plants to recognize and respond to attack, and measure the downstream effect in either biochemical or molecular terms. At the whole plant level, ecologists examine the fitness costs of attack not only for the plant but also over a range of trophic levels. The links between these differing levels of study are beginning to be addressed by the adoption of molecular approaches in more ecologically relevant settings. This review will describe the different approaches used by ecologists and cell biologists in this field and will try to address the question of how we can explore the response to, and consequences, of attack by multiple enemies.