932 resultados para Plant cell wall degrading enzyme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agaricus bisporus is the most commonly cultivated mushroom in North America and has a great economic value. Green mould is a serious disease of A. bisporus and causes major reductions in mushroom crop production. The causative agent of green mould disease in North America was identified as Trichoderma aggressivum f. aggressivum. Variations in the disease resistance have been shown in the different commercial mushroom strains. The purpose of this study is to continue investigations of the interactions between T. aggressivum and A. bisporus during the development of green mould disease. The main focus of the research was to study the roles of cell wall degrading enzymes in green mould disease resistance and pathogenesis. First, we tried to isolate and sequence the N-acetylglucosaminidase from A. bisporus to understand the defensive mechanism of mushroom against the disease. However, the lack of genomic and proteomic information of A. bisporus limited our efforts. Next, T. aggressivum cell wall degrading enzymes that are thought to attack Agaricus and mediate the disease development were examined. The three cell wall degrading enzymes genes, encoding endochitinase (ech42), glucanase (fJ-1,3 glucanase) and protease (prb 1), were isolated and sequenced from T. aggressivum f. aggressivum. The sequence data showed significant homology with the corresponding genes from other fungi including Trichoderma species. The transcription levels of the three T. aggressivum cell wall degrading enzymes were studied during the in vitro co-cultivation with A. bisporus using R T -qPCR. The transcription levels of the three genes were significantly upregulated compared to the solitary culture levels but were upregulated to a lesser extent in co-cultivation with a resistant strain of A. bisporus than with a sensitive strain. An Agrobacterium tumefaciens transformation system was developed for T. aggressivum and was used to transform three silencing plasmids to construct three new T. aggressivum phenotypes, each with a silenced cell wall degrading enzyme. The silencing efficiency was determined by RT-qPCR during the individual in vitro cocultivation of each of the new phenotypes with A. bisporus. The results showed that the expression of the three enzymes was significantly decreased during the in vitro cocultivation when compared with the wild type. The phenotypes were co-cultivated with A. bisporus on compost with monitoring the green mould disease progression. The data indicated that prbi and ech42 genes is more important in disease progression than the p- 1,3 glucanase gene. Finally, the present study emphasises the role of the three cell wall degrading enzymes in green mould disease infection and may provide a promising tool for disease management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthocyanins are located within the vacuole of plant cells, and are released following cell rupture during eating or processing at which time they first come into contact with the plant cell wall. The extent of anthocyanin-cell wall interaction was investigated by monitoring the rate of anthocyanin depletion in the presence of pure cellulose or cellulose-pectin composites as cell wall models. It was found that anthocyanins interact with both cellulose and pectin over a two-stage process with initially (mins-hours) 13 similar to 18% of anthocyanins binding to cellulose or cellulose/pectincomposites. With prolonged exposure (days-weeks), a gradual increase in anthocyanin binding occurs, possibly due to anthocyanins stacking on top of a base layer. Binding of acylated and non-acylated anthocyanins followed a similar pattern with slightly more (5-10%) binding of the acylated forms. Composites with the highest pectin content had the greatest anthocyanin binding suggesting the existence of both ionic interactions (with pectin) and hydrophobic interactions (with cellulose) of anthocyanin with plant cell walls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial cellulose and cellulose-pectin composites were used as well-defined model plant cell wall (PCW) systems to study the interaction between phenolic acids (PA) derived from purple carrot juice concentrate (PCJC) and PCW components. Significant PA depletion from solution occurred, with pure cellulose initially (30 s-1 h) absorbing more than cellulose-pectin composites in the first hour (ca 20% cf 10-15%), but with all composites absorbing similar levels (ca 30%) after several days. Individual PAs bound to different relative extents with caffeic acid > chlorogenic acid > ferulic acid. Extrapolation of data for these model systems to carrot puree suggests that nutritionally-significant amounts of PAs could bind to cell walls, potentially restricting bioavailability in the small intestine and, as a consequence, delivering PAs to the large intestine for fermentation and metabolism by gut bacteria. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postembedding immunoelectron microscopy has been used to investigate the diffusibility of an endo-beta-1,4-glucanase and a xylanase from A. niger in soybean. The results showed more specific localisation of the enzymes into the protein and lipid bodies of soybean cells. This was against our hypothesis that suggested that the enzymes should be localised in the cell wall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant cell wall is composed mainly of polysaccharides some constituted of repeating units of a single sugar, as cellulose or by two or more sugars grouped in repeating oligosaccharide blocks as the galactomannans and xyloglucans. Variations in composition and fine structure of these cell wall polysaccharides have been used as taxonomic markers and in the comprehension of the evolutive process, particularly in the Leguminosae. Partial hydrolysis of these compounds give rise to oligomers, some of which are capable of eliciting the synthesis of defensive substances in plants named phytoalexins. Species which differ in respect to phytoalexin liberation also differ in cell wall composition, particularly in the pectic fraction of the wall. Pectinases (mainly endopolygalacturonases) present in fungi, have been shown to hydrolyze plant cell walls yielding phytoalexin-eliciting oligosaccharides which differ in composition and in eliciting capacity in different species. These differences can be associated with the capacity of a given species to produce phytoalexins. On the other hand, the phytoalexin induction in plants is being used as a method of producing novel bioactive secondary metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell wall deposition is a key process in the formation, growth, and differentiation of plant cells. The most important structural components of the wall are long cellulose microfibrils, which are synthesized by synthases embedded in the plasma membrane. A fundamental question is how the microfibrils become oriented during deposition at the plasma membrane. The current textbook explanation for the orientation mechanism is a guidance system mediated by cortical microtubules. However, too many contraindications are known in secondary cell walls for this to be a universal mechanism, particularly in the case of helicoidal arrangements, which occur in many situations. An additional construction mechanism involves liquid crystalline self-assembly [A. C. Neville (1993) Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge Univ. Press, Cambridge, U.K.)], but the required amount of bulk material that is able to equilibrate thermally is not normally present at any stage of the wall deposition process. Therefore, we have asked whether the complex ordered texture of helicoidal cell walls can be formed in the absence of direct cellular guidance mechanisms. We propose that they can be formed by a mechanism that is based on geometrical considerations. It explains the genesis of the complicated helicoidal texture and shows that the cell has intrinsic, versatile tools for creating a variety of textures. A compelling feature of the model is that local rules generate global order, a typical phenomenon of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We purified from pea (Pisum sativum) tissue an ≈40 kDa reversibly glycosylated polypeptide (RGP1) that can be glycosylated by UDP-Glc, UDP-Xyl, or UDP-Gal, and isolated a cDNA encoding it, apparently derived from a single-copy gene (Rgp1). Its predicted translation product has 364 aminoacyl residues and molecular mass of 41.5 kDa. RGP1 appears to be a membrane-peripheral protein. Immunogold labeling localizes it specifically to trans-Golgi dictyosomal cisternae. Along with other evidence, this suggests that RGP1 is involved in synthesis of xyloglucan and possibly other hemicelluloses. Corn (Zea mays) contains a biochemically similar and structurally homologous RGP1, which has been thought (it now seems mistakenly) to function in starch synthesis. The expressed sequence database also reveals close homologs of pea Rgp1 in Arabidopsis and rice (Oryza sativa). Rice possesses, in addition, a distinct but homologous sequence (Rgp2). RGP1 provides a polypeptide marker for Golgi membranes that should be useful in plant membrane studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O chumbo é utilizado em muitos produtos, tais como baterias, gasolina, tintas e corantes, resultando na sua libertação no meio ambiente. Neste trabalho, foi examinado o papel da parede celular da levedura Saccharomyces cerevisiae como uma barreira ou como alvo da toxicidade do chumbo. A biodisponibilidade do Pb é muito reduzida pelos componentes do meio de cultura YEPD, o que dificulta a avaliação da toxicidade deste elemento em concentrações ambientalmente realistas. Para avaliar a toxicidade de Pb em S. cerevisiae, em condições de crescimento, foram efetuadas diferentes diluições (10-100 vezes) do meio YEPD, as quais foram misturadas com várias concentrações de Pb (0,1-1,0 mmol/l). Observou-se que o YEPD diluído 25 vezes constituía a melhor condição de compromisso entre o crescimento celular e a precipitação de Pb. Os genes CWP1 e CWP2 codificam para duas grandes manoproteínas da parede celular da levedura S. cerevisiae; a deleção destes genes CWP aumenta a permeabilidade da parede celular. A suscetibilidade de células de levedura interrompidas no gene CWP1 (estirpe cwp1Δ) ou CWP2 (estirpe cwp2Δ) foi comparada com a da estirpe, isogénica, selvagem (WT). Verificou-se que o crescimento das estirpes cwp1Δ e cwp2Δ, no meio de cultura YEPD 25 vezes diluído, na presença de Pb, não diferiu do crescimento da estirpe WT. Este resultado sugere que a alteração da permeabilidade da parede celular não altera a sensibilidade de células de levedura ao Pb. Foi investigada o impacto do Pb na parede celular de levedura. Para este efeito, comparou-se a suscetibilidade ao dodecil sulfato de sódio (SDS), ao calcofluor (CFW) e a uma enzima que degrada a parede da célula (liticase), em células da estirpe WT não expostas ou expostas a Pb durante 4, 8 ou 24 h. Além disso, o conteúdo de quitina da parede celular de levedura foi investigada por coloração das células com CFW. Os resultados não mostraram uma alteração da suscetibilidade ao SDS e ao CFW, nas células tratadas com Pb; contudo, nas células tratadas durante 24 h com Pb, observou-se um aumento da sensibilidade à liticase e um aumento da coloração com CFW. Estes resultados sugerem que o chumbo interage com a parede celular da levedura e influencia a sua composição. Deve ser levado a cabo trabalho adicional a fim de confirmar estes resultados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separately, polyphenols and plant cell walls (PCW) are important contributors to the health benefits associated with fruits and vegetables. However, interactions with PCW which occur either during food preparation or mastication may affect bioaccessibility and hence bioavailability of polyphenols. Binding interactions between anthocyanins, phenolic acids (PAs) and PCW components, were evaluated using both a bacterial cellulose-pectin model system and a black carrot puree system. The majority of available polyphenols bound to PCW material with 60-70% of available anthocyanins and PAs respectively binding to black carrot puree PCW matter. Once bound, release of polyphenols using acidified methanol is low with only similar to 20% of total anthocyanins to similar to 30% of PAs being released. Less than 2% of bound polyphenol was released after in vitro gastric and small intestinal (S.I.) digestion for both the model system and the black carrot puree PCW matter. Confocal laser scanning microscopy shows localised binding of anthocyanins to PCW. Very similar patterns of binding for anthocyanins and PAs suggest that PAs form complexes with anthocyanins and polysaccharides. Time dependent changes in extractability with acidified methanol but not the total bound fraction suggests that initial nonspecific deposition on cellulose surfaces is followed by rearrangement of the bound molecules. Minimal release of anthocyanins and PAs after simulated gastric and S.I. digestion indicates that polyphenols in fruits and vegetables which bind to the PCW will be transported to the colon where they would be expected to be released by the action of cell wall degrading bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erwinia carotovora subsp. carotovora (Ecc) is a Gram-negative enterobacterium that causes soft-rot in potato and other crops. The main virulence determinants, the extracellular plant cell wall -degrading enzymes (PCWDEs), lead to plant tissue maceration. In order to establish a successful infection the production of PCWDEs are controlled by a complex regulatory network, including both specific and global activators and repressors. One of the most important virulence regulation systems in Ecc is mediated by quorum sensing (QS), which is a population density -dependent cell-to-cell communication mechanism used by many Gram-negative bacteria. In these bacteria N-acylhomoserine lactones (AHSL), act as diffusible signaling molecules enabling communication between bacterial cells. The AHSLs are structurally diverse and differ in their acyl chain length. This gives the bacteria signaling specificity and enables the recognition and communication within its own species. In order to detect and respond to the AHSLs the bacteria use QS regulators, LuxR-type proteins. The aim of this study was to get a deeper understanding of the Ecc QS system. In the first part of the study we showed that even different strains of Ecc use different dialects and of physiological concentrations, only the cognate AHSL with the correct acyl chain is recognized as a signal that can switch on virulence genes. The molecular basis of the substrate specificity of the AHSL synthase ExpI was investigated in order to recognize the acyl chain length specificity determinants of distinct AHSL synthases. Several critical residues that define the size of the substrate-binding pocket were identified. We demonstrated that in the ExpISCC1 mutations M127T and F69L are sufficient to change the N-3-oxohexanoyl-L-homoserine lactone producing ExpISCC1 to an N-3-oxooctanoyl-L-homoserine lactone (3-oxo-C8-HSL) producing enzyme. In the second study the means of sensing specificity and response to the AHSL signaling molecule were investigated. We demonstrated that the AHSL receptor ExpR1 of Ecc strain SCC3193 has strict specificity for the cognate AHSL 3-oxo-C8-HSL. In addition we identified a second AHSL receptor ExpR2 with a novel property to sense AHSLs with different acyl chain lengths. In the absence of AHSLs ExpR1 and ExpR2 were found to act synergistically to repress the virulence gene expression. This repression was shown to be released by addition of AHSLs and appears to be largely mediated by the global negative regulator RsmA. In the third study random transposon mutagenesis was used to widen the knowledge of the Ecc QS regulon. Two new QS-controlled target genes, encoding a DNA-binding regulator Hor and a plant ferredoxin-like protein FerE, were identified. The QS control of the identified genes was executed by the QS regulators ExpR1 and ExpR2 and as expression of PCWDE genes mediated by the RsmA repressor. Hor was shown to contribute to bacterial virulence at least partly through its control of PCWDE production, while FerE was shown to contribute to oxidative stress tolerance and in planta fitness of the bacteria. In addition our results suggest that QS is central to the control of oxidative stress tolerance in Ecc. In conclusion, these results indicate that Ecc strain SCC3193 is able to react and respond both to the cognate AHSL signal and the signals produced by other bacterial species, in order to control a wide variety of functions in the plant pathogen Ecc.