996 resultados para Plant Toxins
Resumo:
Plant toxins are substances produced and secreted by plants to defend themselves against predators. In a broad sense, this includes all substances that have a toxic effect on targeted organisms, whether they are microbes, other plants, insects, or higher animals. Plant toxins have a diverse range of structures, from small organic molecules through to proteins. This review gives an overview of the various classes of plant toxins but focuses on an interesting class of protein-based plant toxins containing a cystine knot motif. This structural motif confers exceptional stability on proteins containing it and is associated with a wide range of biological activities. The biological activities and structural stability offer many potential applications in the pharmaceutical and agricultural fields. One particularly exciting prospect is in the use of protein-based plant toxins as molecular scaffolds for displaying pharmaceutically important bioactivities. Future applications of plant toxins are likely to involve genetic engineering techniques and molecular pharming approaches.
Resumo:
Ribosome inactivating proteins (RIPs) are a family of plant proteins that depurinate the major rRNA, inhibiting the protein synthesis. RIPs are divided into type 1, single chain proteins with enzymatic activity, and type 2 RIPs (toxic and non-toxic), with the enzymatic chain linked to a binding chain. RIPs have been used alone or as toxic component of immunotoxins for experimental therapy of many diseases. The knowledge of cell death pathway(s) induced by RIPs could be useful for clarifying the mechanisms induced by RIPs and for designing specific immunotherapy. The topic of the current study was (i) the determination of the amino acid sequence of the type 2 RIP stenodactylin. The comparison with other RIPs showed that the A chain is related to other toxic type 2 RIPs. whereas the B chain is more related to the non-toxic type 2 RIPs. This latter result is surprising because stenodactylin is actually the most toxic type 2 RIP known; (ii) the study of the cell death mechanisms induced by stenodactylin in human neuroblastoma cells (NB100). High doses of stenodactylin can activate the effector caspases (perhaps through the DNA damage and/or intrinsic/extrinsic pathways) and also cause ROS generation. Low doses cause a caspase-dependent apoptosis, mainly via extrinsic pathway. Moreover, the activation of caspases precedes the inhibition of protein synthesis; (iii) the investigation of the cell death pathway induced by the non-toxic type 2 RIPs ebulin l and nigrin b. These RIPs demonstrated high enzymatic activity in a cell-free system, but they lack high cytotoxicity. These preliminary studies demonstrate that the cell death mechanism induced by the two non-toxic RIPs is partially caspase-dependent apoptosis, but other mechanisms seem to be involved
Resumo:
Diversification of insect herbivores is often associated with coevolution between plant toxins and insect countermeasures, resulting in a specificity that restricts host plant shifts. Gall inducers, however, bypass plant toxins and the factors influencing host plant associations in these specialized herbivores remain unclear. We reconstructed the evolution of host plant associations in Western Palaearctic oak gallwasps (Cynipidae: Cynipini), a species-rich lineage of specialist herbivores on oak (Quercus). (1) Bayesian analyses of sequence data for three genes revealed extreme host plant conservatism, with inferred shifts between major oak lineages (sections Cerris and Quercus) closely matching the minimum required to explain observed diversity. It thus appears that the coevolutionary demands of gall induction constrain host plant shifts, both in cases of mutualism (e.g., fig wasps, yucca moths) and parasitism (oak gallwasps). (2) Shifts between oak sections occurred independently in sexual and asexual generations of the gallwasp lifecycle, implying that these can evolve independently. (3) Western Palaearctic gallwasps associated with sections Cerris and Quercus diverged at least 20 million years ago (mya), prior to the arrival of oaks in the Western Palaearctic from Asia 5-7 mya. This implies an Asian origin for Western Palaearctic gallwasps, with independent westwards range expansion by multiple lineages.
Resumo:
Roots play an important role for plant defence and resistance against pathogens and insect herbivores: They act as environmental sensors for space, nutrients and water, they are important biosynthetic sites of plant toxins, they can store assimilates for future regrowth, and they possess themselves a potent defensive system to fend off belowground attackers. Although roots are often seen as passive tissue that only delivers services to the rest of the plant, it is becoming increasingly evident that roots actively respond to environmental conditions and are a vital part of the plant’s signaling and perception machinery. This chapter summarizes what is known about roots as constituents of plant resistance and defense mechanisms, with a particular emphasis on signaling aspects. It also discusses how the increasing knowledge about roots can be used to help protect plants from harmful pests.
Resumo:
Numerous insect herbivores can take up and store plant toxins as self-defense against their own natural enemies. Plant toxin sequestration is tightly linked with tolerance strategies that keep the toxins functional. Specific transporters have been identified that likely allow the herbivore to control the spatiotemporal dynamics of toxin accumulation. Certain herbivores furthermore possess specific enzymes to boost the bioactivity of the sequestered toxins. Ecologists have studied plant toxin sequestration for decades. The recently uncovered molecular mechanisms in combination with transient, non-transgenic systems to manipulate insect gene expression will help to understand the importance of toxin sequestration for food-web dynamics in nature.
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
CD33 is a myeloid cell surface marker absent on normal hematopoietic stem cells and normal tissues but present on leukemic blasts in 90% of adult and paediatric acute myeloid leukaemia (AML) cases. By virtue of its expression pattern and its ability to be rapidly internalized after antibody binding, CD33 has become an attractive target for new immunotherapeutic approaches to treat AML. In this study two immunoconjugates were constructed to contain a humanised single-chain fragment variable antibody (scFv) against CD33 in order to create new antibody-derived therapeutics for AML. The first immunoconjugate was developed to provide targeted delivery of siRNAs as death effectors into leukemic cells. To this purpose, a CD33-specific scFv, modified to include a Cys residue at its C-terminal end (scFvCD33-Cys), was coupled through a disulphide bridge to a nona-d-arginine (9R) peptide carrying a free Cys to the N-terminal. The scFvCD33-9R was able to completely bind siRNAs at a protein to nucleic acid ratio of about 10:1, as confirmed by electrophoretic gel mobility-shift assay. The conjugate was unable to efficiently transduce cytotoxic siRNA (siTox) into the human myeloid cell line U937. We observed slight reductions in cell viability, with a reduction of 25% in comparison to the control group only at high concentration of siTox (300 nM). The second immunoconjugate was constructed by coupling the scFvCD33-Cys to the type 1 ribosome inactivating protein Dianthin 30 (DIA30) through a chemical linking The resulting immunotoxin scFvCD33-DIA30 caused the rapid arrest of protein synthesis, inducing apoptosis and leading ultimately to cell death. In vitro dose-dependent cytotoxicity assays demonstrated that scFvCD33-DIA30 was specifically toxic to CD33-positive cell U937. The concentration needed to reach 50 % of maximum killing efficiency (EC50) was approximately 0.3 nM. The pronounced antigen-restricted cytotoxicity of this novel agent makes it a candidate for further evaluation of its therapeutic potential.
Resumo:
Plants have evolved intricate strategies to withstand attacks by herbivores and pathogens. Although it is known that plants change their primary and secondary metabolism in leaves to resist and tolerate aboveground attack, there is little awareness of the role of roots in these processes. This is surprising given that plant roots are responsible for the synthesis of plant toxins, play an active role in environmental sensing and defense signaling, and serve as dynamic storage organs to allow regrowth. Hence, studying roots is essential for a solid understanding of resistance and tolerance to leaf-feeding insects and pathogens. Here, we highlight this function of roots in plant resistance to aboveground attackers, with a special focus on systemic signaling and insect herbivores
Resumo:
This chapter reviews studies on the effects of mycotoxins on embryonic and fetal development, especially those toxins that are global food and feed contaminants. The toxins discussed include aflatoxin produced by Aspergillus flavus and A. parasiticus, ochratoxin which is produced by Aspergillus species particularly A. ochraceus as well as Penicillium verrucosum, ergot alkaloids produced by Claviceps spp., and the Fusarium toxins (fumonisins, deoxynivalenol [vomitoxin], and zearalenone). These toxins have been shown to be teratogenic and/or embryotoxic in different animal bioassays. The implications of toxicity on embryogenesis, and the progress of research on these mycotoxins, are also examined.
Resumo:
Out of the twenty-four samples of shrimp and fish muscle used for this study, twelve were collected near a large marine sewer for waste disposal, 3 km off the coast of Fortaleza (Brazil) and used for the isolation of E. coli. Other twelve were collected at the Mucuripe fresh fish market (Fortaleza, Brazil) and used for the isolation of Staphylococcus aureus. Ethanol, water and acetone-diluted extracts of guava and papaya leaf sprouts were tested on the bacteria in order to verify their microbicidal potential. The E. coli strains used in the trials were rated LT positive. The papaya leaf extracts (Carica papaya Linn) showed no microbicidal activity while the guava sprout extracts (Psidium guajava Linn) displayed halos exceeding 13 mm for both species, an effect considered to be inhibitory by the method employed. Guava sprout extracts by 50% diluted ethanol most effectively inhibited E. coli (EPEC), while those in 50% acetone were less effective. It may be concluded that guava sprout extracts constitute a feasible treatment option for diarrhea caused by E. coli or by S. aureus-produced toxins, due to their quick curative action, easy availability in tropical countries and low cost to the consumer.
Resumo:
CONTENTS: Summary 28 I. Historic background and introduction 29 II. Diversity of cardenolide forms 29 III. Biosynthesis 30 IV. Cardenolide variation among plant parts 31 V. Phylogenetic distribution of cardenolides 32 VI. Geographic distribution of cardenolides 34 VII. Ecological genetics of cardenolide production 34 VIII. Environmental regulation of cardenolide production 34 IX. Biotic induction of cardenolides 36 X. Mode of action and toxicity of cardenolides 38 XI. Direct and indirect effects of cardenolides on specialist and generalist insect herbivores 39 XII. Cardenolides and insect oviposition 39 XIII. Target site insensitivity 40 XIV. Alternative mechanisms of cardenolide resistance 40 XV. Cardenolide sequestration 41 Acknowledgements 42 References 42 SUMMARY: Cardenolides are remarkable steroidal toxins that have become model systems, critical in the development of theories for chemical ecology and coevolution. Because cardenolides inhibit the ubiquitous and essential animal enzyme Na(+) /K(+) -ATPase, most insects that feed on cardenolide-containing plants are highly specialized. With a huge diversity of chemical forms, these secondary metabolites are sporadically distributed across 12 botanical families, but dominate the Apocynaceae where they are found in > 30 genera. Studies over the past decade have demonstrated patterns in the distribution of cardenolides among plant organs, including all tissue types, and across broad geographic gradients within and across species. Cardenolide production has a genetic basis and is subject to natural selection by herbivores. In addition, there is strong evidence for phenotypic plasticity, with the biotic and abiotic environment predictably impacting cardenolide production. Mounting evidence indicates a high degree of specificity in herbivore-induced cardenolides in Asclepias. While herbivores of cardenolide-containing plants often sequester the toxins, are aposematic, and possess several physiological adaptations (including target site insensitivity), there is strong evidence that these specialists are nonetheless negatively impacted by cardenolides. While reviewing both the mechanisms and evolutionary ecology of cardenolide-mediated interactions, we advance novel hypotheses and suggest directions for future work.
Resumo:
Pseudomonas fluorescens CHA0 and the related strain Pf-5 are well-characterized representatives of rhizosphere bacteria that have the capacity to protect crop plants from fungal root diseases, mainly by releasing a variety of exoproducts that are toxic to plant pathogenic fungi. Here, we report that the two plant-beneficial pseudomonads also exhibit potent insecticidal activity. Anti-insect activity is linked to a novel genomic locus encoding a large protein toxin termed Fit (for P. fluorescensinsecticidal toxin) that is related to the insect toxin Mcf (Makes caterpillars floppy) of the entomopathogen Photorhabdus luminescens, a mutualist of insect-invading nematodes. When injected into the haemocoel, even low doses of P. fluorescens CHA0 or Pf-5 killed larvae of the tobacco hornworm Manduca sexta and the greater wax moth Galleria mellonella. In contrast, mutants of CHA0 or Pf-5 with deletions in the Fit toxin gene were significantly less virulent to the larvae. When expressed from an inducible promoter in a non-toxic Escherichia coli host, the Fit toxin gene was sufficient to render the bacterium toxic to both insect hosts. Our findings establish the Fit gene products of P. fluorescens CHA0 and Pf-5 as potent insect toxins that define previously unappreciated anti-insect properties of these plant-colonizing bacteria
Resumo:
BACKGROUND: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. RESULTS: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. CONCLUSIONS: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.