999 resultados para Plant Invasions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most studies of invasive species have been in highly modified, lowland environments, with comparatively little attention directed to less disturbed, high-elevation environments. However, increasing evidence indicates that plant invasions do occur in these environments, which often have high conservation value and provide important ecosystem services. Over a thousand non-native species have become established in natural areas at high elevations worldwide, and although many of these are not invasive, some may pose a considerable threat to native mountain ecosystems. Here, we discuss four main drivers that shape plant invasions into high-elevation habitats: (1) the (pre-)adaptation of non-native species to abiotic conditions, (2) natural and anthropogenic disturbances, (3) biotic resistance of the established communities, and (4) propagule pressure. We propose a comprehensive research agenda for tackling the problem of plant invasions into mountain ecosystems, including documentation of mountain invasion patterns at multiple scales, experimental studies, and an assessment of the impacts of non-native species in these systems. The threat posed to high-elevation biodiversity by invasive plant species is likely to increase because of globalization and climate change. However, the higher mountains harbor ecosystems where invasion by non-native species has scarcely begun, and where science and management have the opportunity to respond in time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mountain ecosystems have been less adversely affected by invasions of non-native plants than most other ecosystems, partially because most invasive plants in the lowlands are limited by climate and cannot grow under harsher high-elevation conditions. However, with ongoing climate change, invasive species may rapidly move upwards and threaten mid- then high-elevation mountain ecosystems. We evaluated this threat by predicting current and future potential distributions of 48 invasive plant species distributed in Switzerland (CH) and New South Wales (NSW), two areas where climate interacts differently with the elevation gradient. Using a species distribution modeling approach combining two scales, which builds on high-resolution data (< 250 m) but accounts for the global climatic niche of species, we found that different environmental drivers limit the elevation range of invasive species in the two regions, leading to region-specific species responses to climate change. Whereas the optimal suitability for plant invaders is predicted to markedly shift from the lowland to the montane or subalpine zone in CH, such an upward shift is far less pronounced in NSW where montane and subalpine elevations are currently already suitable. Non-native species able to invade the upper reaches of mountains in a future climate will be cold-tolerant in the Swiss Alps but preferring wet soils in the Australian Alps. Other plant traits were only marginally associated with elevation limits. These results demonstrate that a more systematic consideration of future distributions of invasive species is required in conservation plans of not yet invaded mountainous ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While many developed countries have invested heavily in research on plant invasions over the last 50 years, the immense region of Latin America has made little progress. Recognising this, a group of scientists working on plant invasions in Latin America met in Chile in late 2010 to develop a research agenda for the region based on lessons learned elsewhere. Our three main findings are as follows. (1) Globalisation is inevitable, but the resultant plant introductions can be slowed or prevented by effective quarantine and early intervention. Development of spatially explicit inventories, research on the invasion process and weed risk assessments can help prioritise and streamline action. (2) Eradication has limited application for plants and control is expensive and requires strict prioritisation and careful planning and evaluation. (3) Accepting the concept of novel ecosystems, new combinations of native and introduced species that no longer depend on human intervention, may help optimise invasive species management. Our vision of novel ecosystem management is through actions that: (a) maintain as much native biodiversity and ecosystem functionality as possible, (b) minimise management intervention to invasives with known impact, and (c) maximise the area of intervention. We propose the creation of a Latin American Invasive Plants Network to help focus the new research agenda for member countries. The network would coordinate research and training and establish funding priorities, develop and strengthen tools to share knowledge, and raise awareness at the community, governmental and intergovernmental levels about the social, economic and environmental costs of plant invasions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On Tuesday, October 15th 2013, Ragan Callaway, the MT-EPSCoR Project Director & Division of Biological Sciences at the University of Montana spoke at Montana Tech about Soil Biota and Exotic Plant Invasions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5.Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim The spotted knapweed (Centaurea stoebe), a plant native to south-east and central Europe, is highly invasive in North America. We investigated the spatio-temporal climatic niche dynamics of the spotted knapweed in North America along two putative eastern and western invasion routes. We then considered the patterns observed in the light of historical, ecological and evolutionary factors. Location Europe and North America. Methods The niche characteristics of the east and west invasive populations of spotted knapweed in North America were determined from documented occurrences over 120 consecutive years (1890-2010). The 2.5 and 97.5 percentiles of values along temperature and precipitation gradients, as given by the two first axes of a principal component axis (PCA), were then calculated. We additionally measured the climatic dissimilarity between invaded and native niches using a multivariate environmental similarity surface (MESS) analysis. Results Along both invasion routes, the species established in regions with climatic conditions that were similar to those in the native range in Europe. An initial spread in ruderal habitats always preceded spread in (semi-)natural habitats. In the east, the niche gradually increased over time until it reached limits similar to the native niche. Conversely, in the west the niche abruptly expanded after an extended time lag into climates not occupied in the native range; only the native cold niche limit was conserved. Main conclusions Our study reveals that different niche dynamics have taken place during the eastern and western invasions. This pattern indicates different combinations of historical, ecological and evolutionary factors in the two ranges. We hypothesize that the lack of a well-developed transportation network in the west at the time of the introduction of spotted knapweed confined the species to a geographically and climatically isolated region. The invasion of dry rangelands may have been favoured during the agricultural transition in the 1930s by release from natural enemies, local adaptation and less competitive vegetation, but further experimental and molecular studies are needed to explain these contrasting niche patterns fully. Our study illustrates the need and benefit of applying large-scale, temporally explicit approaches to understanding biological invasions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Plants interact with many organisms, such as microbes and herbivores, and these interactions are likely to affect the establishment and spread of plants. In the context of plant invasions, mycorrhizal fungi and constitutive and induced resistance of plants against herbivores have received attention independently of each other. However, plants are frequently involved in complex multi-trophic interactions, which might differ between invasive and non-invasive alien plants. 2. In a multi-species comparative experiment, we aimed to improve our understanding of plant traits associated with invasiveness. We tested whether eight invasive alien plant species use the mycorrhizal symbiosis in a more beneficial way, and have higher levels of constitutive or induced resistance against two generalist bioassay herbivores, than nine non-invasive alien species. We further assessed whether the presence of mycorrhizal fungi altered the resistance of the plant species, and whether this differed between invasive and non-invasive alien species. 3. While invasive species produced more biomass, they did not differ in their biomass response to mycorrhizal fungi from non-invasive alien species. Invasive species also did not have higher levels of constitutive or induced resistance against the two generalist herbivores. Mycorrhizal fungi greatly affected the resistance of our plant species, however, this was also unrelated to whether the alien species were invasive or not. 4. Our study confirms the previous findings that invasive species generally grow faster and produce more biomass than non-invasive alien species. We further show that alien plant species used a variety of defence strategies, and also varied in their interactions with mycorrhizal fungi. These multi-trophic interactions were not consistently related to invasiveness of the alien plant species. 5. We suggest that awareness of the fact that alien plant species are involved in multi-trophic interactions might lead to a more complete understanding of the factors contributing to a plant's success.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mapping is an important tool for the management of plant invasions. If landscapes are mapped in an appropriate way, results can help managers decide when and where to prioritize their efforts. We mapped vegetation with the aim of providing key information for managers on the extent, density and rates of spread of multiple invasive species across the landscape. Our case study focused on an area of Galapagos National Park that is faced with the challenge of managing multiple plant invasions. We used satellite imagery to produce a spatially-explicit database of plant species densities in the canopy, finding that 92% of the humid highlands had some degree of invasion and 41% of the canopy was comprised of invasive plants. We also calculated the rate of spread of eight invasive species using known introduction dates, finding that species with the most limited dispersal ability had the slowest spread rates while those able to disperse long distances had a range of spread rates. Our results on spread rate fall at the lower end of the range of published spread rates of invasive plants. This is probably because most studies are based on the entire geographic extent, whereas our estimates took plant density into account. A spatial database of plant species densities, such as the one developed in our case study, can be used by managers to decide where to apply management actions and thereby help curtail the spread of current plant invasions. For example, it can be used to identify sites containing several invasive plant species, to find the density of a particular species across the landscape or to locate where native species make up the majority of the canopy. Similar databases could be developed elsewhere to help inform the management of multiple plant invasions over the landscape.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Invasive plants can have different effects of ecosystem functioning and on the provision of ecosystem services, from strongly deleterious impacts to positive effects. The nature and intensity of such effects will depend on the service and ecosystem being considered, but also on features of life strategies of invaders that influence their invasiveness as well as their influence of key processes of receiving ecosystems. To address the combined effect of these various factors we developed a robust and efficient methodological framework that allows to identify areas of possible conflict between ecosystem services and alien invasive plants, considering interactions between landscape invasibility and species invasiveness. Our framework combines the statistical robustness of multi-model inference, efficient techniques to map ecosystem services, and life strategies as a functional link between invasion, functional changes and potential provision of services by invaded ecosystems. The framework was applied to a test region in Portugal, for which we could successfully predict the current patterns of plant invasion, of ecosystem service provision, and finally of probable conflict (expressing concern for negative impacts, and value for positive impacts on services) between alien species richness (total and per plant life strategy) and the potential provision of selected services. Potential conflicts were identified for all combinations of plant strategy and ecosystem service, with an emphasis for those concerning conflicts with carbon sequestration, water regulation and wood production. Lower levels of conflict were obtained between invasive plant strategies and the habitat for biodiversity supporting service. The added value of the proposed framework in the context of landscape management and planning is discussed in perspective of anticipation of conflicts, mitigation of negative impacts, and potentiation of positive effects of plant invasions on ecosystems and their services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a novel dissimilarity framework to analyze spatial patterns of species diversity and illustrate it with alien plant invasions in Northern Portugal. We used this framework to test the hypothesis that patterns of alien invasive plant species richness and composition are differently affected by differences in climate, land use and landscape connectivity (i.e. Geographic distance as a proxy and vectorial objects that facilitate dispersal such as roads and rivers) between pairs of localities at the regional scale. We further evaluated possible effects of plant life strategies (Grime's C-S-R) and residence time. Each locality consisted of a 1 km(2) landscape mosaic in which all alien invasive species were recorded by visiting all habitat types. Multi-model inference revealed that dissimilarity in species richness is more influenced by environmental distance (particularly climate), whereas geographic distance (proxies for dispersal limitations) is more important to explain dissimilarity in species composition, with a prevailing role for ecotones and roads. However, only minor differences were found in the responses of the three C-S-R strategies. Some effect of residence time was found, but only for dissimilarity in species richness. Our results also indicated that environmental conditions (e.g. climate conditions) limit the number of alien species invading a given site, but that the presence of dispersal corridors determines the paths of invasion and therefore the pool of species reaching each site. As geographic distances (e.g. ecotones and roads) tend to explain invasion at our regional scale highlights the need to consider the management of alien invasions in the context of integrated landscape planning. Alien species management should include (but not be limited to) the mitigation of dispersal pathways along linear infrastructures. Our results therefore highlight potentially useful applications of the novel multimodel framework to the anticipation and management of plant invasions. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tot i que la creixent amenaça de les plantes exòtiques invasores en els espais naturals és un fet evident, aquest problema és gairebé desconegut a la Vall d'Alinyà. Es van estudiar set punts de mostreig associats a quatre tipologies d'hàbitat per esbrinar la distribució de les plantes invasores en la Vall d'Alinyà, així com canvis recents en la seva composició, abundància i en el rang de distribució a partir de fonts bibliogràfiques. Es va desenvolupar un índex per quantificar la problemàtica de les invasions de flora exòtica en els diferents hàbitats estudiats. Els focus d'invasió van resultar estar associats a zones pertorbades, nuclis de població i baixes altituds. El canvi climàtic i els canvis en els usos del sòl podrien estar jugant un paper essencial en l'aparició de noves plantes invasores i en l'increment tant de l'abundància com de la cota altitudinal dels nivells més grans d'invasió. Tot i que la problemàtica associada a les plantes invasores en la Vall d'Alinyà és generalment baixa, algunes espècies com Senecio inaequidens representen una amenaça per a l'espai, motiu pel qual es proposa un pla de gestió per a la flora invasora.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)