488 resultados para Planets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncovering the demographics of extrasolar planets is crucial to understanding the processes of their formation and evolution. In this thesis, we present four studies that contribute to this end, three of which relate to NASA's Kepler mission, which has revolutionized the field of exoplanets in the last few years.

In the pre-Kepler study, we investigate a sample of exoplanet spin-orbit measurements---measurements of the inclination of a planet's orbit relative to the spin axis of its host star---to determine whether a dominant planet migration channel can be identified, and at what confidence. Applying methods of Bayesian model comparison to distinguish between the predictions of several different migration models, we find that the data strongly favor a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. While we test only the predictions of particular Kozai and scattering migration models in this work, these methods may be used to test the predictions of any other spin-orbit misaligning mechanism.

We then present two studies addressing astrophysical false positives in Kepler data. The Kepler mission has identified thousands of transiting planet candidates, and only relatively few have yet been dynamically confirmed as bona fide planets, with only a handful more even conceivably amenable to future dynamical confirmation. As a result, the ability to draw detailed conclusions about the diversity of exoplanet systems from Kepler detections relies critically on understanding the probability that any individual candidate might be a false positive. We show that a typical a priori false positive probability for a well-vetted Kepler candidate is only about 5-10%, enabling confidence in demographic studies that treat candidates as true planets. We also present a detailed procedure that can be used to securely and efficiently validate any individual transit candidate using detailed information of the signal's shape as well as follow-up observations, if available.

Finally, we calculate an empirical, non-parametric estimate of the shape of the radius distribution of small planets with periods less than 90 days orbiting cool (less than 4000K) dwarf stars in the Kepler catalog. This effort reveals several notable features of the distribution, in particular a maximum in the radius function around 1-1.25 Earth radii and a steep drop-off in the distribution larger than 2 Earth radii. Even more importantly, the methods presented in this work can be applied to a broader subsample of Kepler targets to understand how the radius function of planets changes across different types of host stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results from a search for additional transiting planets in 24 systems already known to contain a transiting planet. We model the transits due to the known planet in each system and subtract these models from light curves obtained with the SuperWASP (Wide Angle Search for Planets) survey instruments. These residual light curves are then searched for evidence of additional periodic transit events. Although we do not find any evidence for additional planets in any of the planetary systems studied, we are able to characterize our ability to find such planets by means of Monte Carlo simulations. Artificially generated transit signals corresponding to planets with a range of sizes and orbital periods were injected into the SuperWASP photometry and the resulting light curves searched for planets. As a result, the detection efficiency as a function of both the radius and orbital period of any second planet is calculated. We determine that there is a good (>50 per cent) chance of detecting additional, Saturn-sized planets in P ~ 10 d orbits around planet-hosting stars that have several seasons of SuperWASP photometry. Additionally, we confirm previous evidence of the rotational stellar variability of WASP-10, and refine the period of rotation. We find that the period of the rotation is 11.91 +/- 0.05 d, and the false alarm probability for this period is extremely low (~10-13).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a transit timing study of the transiting exoplanetary system HD 189733. In total, we observed 10 transits in 2006 and 2008 with the 2.6-m Nordic Optical Telescope, and two transits in 2007 with the 4.2-m William Herschel Telescope. We used Markov Chain Monte Carlo simulations to derive the system parameters and their uncertainties, and our results are in a good agreement with previously published values. We performed two independent analyses of transit timing residuals to place upper mass limits on putative perturbing planets. The results show no evidence for the presence of planets down to 1 Earth mass near the 1:2 and 2:1 resonance orbits, and planets down to 2.2 Earth masses near the 3:5 and 5:3 resonance orbits with HD 189733b. These are the strongest limits to date on the presence of other planets in this system. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. ‡

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Several competing scenarios for planetary-system formation and evolution seek to explain how hot Jupiters came to be so close to their parent stars. Most planetary parameters evolve with time, making it hard to distinguish between models. The obliquity of an orbit with respect to the stellar rotation axis is thought to be more stable than other parameters such as eccentricity. Most planets, to date, appear aligned with the stellar rotation axis; the few misaligned planets so far detected are massive (> 2 MJ). Aims: Our goal is to measure the degree of alignment between planetary orbits and stellar spin axes, to search for potential correlations with eccentricity or other planetary parameters and to measure long term radial velocity variability indicating the presence of other bodies in the system. Methods: For transiting planets, the Rossiter-McLaughlin effect allows the measurement of the sky-projected angle ß between the stellar rotation axis and a planet's orbital axis. Using the HARPS spectrograph, we observed the Rossiter-McLaughlin effect for six transiting hot Jupiters found by the WASP consortium. We combine these with long term radial velocity measurements obtained with CORALIE. We used a combined analysis of photometry and radial velocities, fitting model parameters with the Markov Chain Monte Carlo method. After obtaining ß we attempt to statistically determine the distribution of the real spin-orbit angle ?. Results: We found that three of our targets have ß above 90°: WASP-2b: ß = 153°+11-15, WASP-15b: ß = 139.6°+5.2-4.3 and WASP-17b: ß = 148.5°+5.1-4.2; the other three (WASP-4b, WASP-5b and WASP-18b) have angles compatible with 0°. We find no dependence between the misaligned angle and planet mass nor with any other planetary parameter. All six orbits are close to circular, with only one firm detection of eccentricity e = 0.00848+0.00085-0.00095 in WASP-18b. No long-term radial acceleration was detected for any of the targets. Combining all previous 20 measurements of ß and our six and transforming them into a distribution of ? we find that between about 45 and 85% of hot Jupiters have ? > 30°. Conclusions: Most hot Jupiters are misaligned, with a large variety of spin-orbit angles. We find observations and predictions using the Kozai mechanism match well. If these observational facts are confirmed in the future, we may then conclude that most hot Jupiters are formed from a dynamical and tidal origin without the necessity to use type I or II migration. At present, standard disc migration cannot explain the observations without invoking at least another additional process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. In theory, however, it is possible to determine the inclination angle, i, between the rotation axis of a star and an observer's line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P(rot)) and the stellar radius (R(*)). For stars which host planetary systems this allows the removal of the sin i dependency of extra-solar planet masses derived from spectroscopic observations under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis.
We have carried out an extensive literature search and present a catalogue of v sin i, P(rot) and R(*) estimates for stars hosting extra-solar planets. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R(*) estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This technique allows proper 1 Sigma two-tailed confidence limits to be placed on the derived sin i's along with the transit probability for each planet to be determined.
While we find that a small proportion of systems yield sin i's significantly greater than 1, most likely due to poor P(rot) estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of similar to 90 degrees and high transit probabilities. In total, we are able to estimate the true masses of 133 extra-solar planets. Of these 133 extra-solar planets, only six have revised masses that place them above the 13M(J) deuterium burning limit; four of those six extra-solar planet candidates were already suspected to lie above the deuterium burning limit before correcting their masses for the sin i dependency. Our work reveals a population of high-mass extra-solar planets with low eccentricities, and we speculate that these extra-solar planets may represent the signature of different planetary formation mechanisms at work. Finally, we discuss future observations that should improve the robustness of this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R sun in the Northern hemisphere, and the independent discovery of HAT-P-30b/WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, Faulkes Telescope South, and TRAPPIST photometry, with CORALIE, SOPHIE, and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 ± 0.06 MJ and radius of 1.32 ± 0.05RJ , and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 ± 0.09 MJ , radius of 1.67 ± 0.10 RJ , and orbits in 2.14 days, while HAT-P-30b/WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 ± 0.05 MJ and radius of 1.42 ± 0.03 RJ , agreeing with values of 0.71 ± 0.03 MJ and 1.34 ± 0.07 RJ reported for HAT-P-30b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the discovery of four new transiting hot jupiters, detected mainly from SuperWASP-North and SOPHIE observations. These new planets, WASP-52b, WASP-58b, WASP-59b, and WASP-60b, have orbital periods ranging from 1.7 to 7.9 days, masses between 0.46 and 0.94 M_Jup, and radii between 0.73 and 1.49 R_Jup. Their G1 to K5 dwarf host stars have V magnitudes in the range 11.7-13.0. The depths of the transits are between 0.6 and 2.7%, depending on the target. With their large radii, WASP-52b and 58b are new cases of low-density, inflated planets, whereas WASP-59b is likely to have a large, dense core. WASP-60 shows shallow transits. In the case of WASP-52 we also detected the Rossiter-McLaughlin anomaly via time-resolved spectroscopy of a transit. We measured the sky-projected obliquity lambda = 24 (+17/-9) degrees, indicating that WASP-52b orbits in the same direction as its host star is rotating and that this prograde orbit is slightly misaligned with the stellar equator. These four new planetary systems increase our statistics on hot jupiters, and provide new targets for follow-up studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a long-standing discussion in the literature as to whether core accretion or disk instability is the dominant mode of planet formation. Over the last decade, several lines of evidence have been presented showing that core accretion is most likely the dominant mechanism for the close-in population of planets probed by radial velocity and transits. However, this does not by itself prove that core accretion is the dominant mode for the total planet population, since disk instability might conceivably produce and retain large numbers of planets in the far-out regions of the disk. If this is a relevant scenario, then the outer massive disks of B-stars should be among the best places for massive planets and brown dwarfs to form and reside. In this study, we present high-contrast imaging of 18 nearby massive stars of which 15 are in the B2-A0 spectral-type range and provide excellent sensitivity to wide companions. By comparing our sensitivities to model predictions of disk instability based on physical criteria for fragmentation and cooling, and using Monte Carlo simulations for orbital distributions, we find that ~85% of such companions should have been detected in our images on average. Given this high degree of completeness, stringent statistical limits can be set from the null-detection result, even with the limited sample size. We find that

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present three newly discovered sub-Jupiter mass planets from the SuperWASP survey: WASP-54b is a heavily bloated planet of mass 0.636$^{+0.025}_{-0.024}$ \mj and radius 1.653$^{+0.090}_{-0.083}$ \rj. It orbits a F9 star, evolving off the main sequence, every 3.69 days. Our MCMC fit of the system yields a slightly eccentric orbit ($e=0.067^{+0.033}_{-0.025}$) for WASP-54b. We investigated further the veracity of our detection of the eccentric orbit for WASP-54b, and we find that it could be real. However, given the brightness of WASP-54 V=10.42 magnitudes, we encourage observations of a secondary eclipse to draw robust conclusions on both the orbital eccentricity and the thermal structure of the planet. WASP-56b and WASP-57b have masses of 0.571$^{+0.034}_{-0.035}$ \mj and $0.672^{+0.049}_{-0.046}$ \mj, respectively; and radii of $1.092^{+0.035}_{-0.033}$ \rj for WASP-56b and $0.916^{+0.017}_{-0.014}$ \rj for WASP-57b. They orbit main sequence stars of spectral type G6 every 4.67 and 2.84 days, respectively. WASP-56b and WASP-57b show no radius anomaly and a high density possibly implying a large core of heavy elements; possibly as high as $\sim$50 M$_{\oplus}$ in the case of WASP-57b. However, the composition of the deep interior of exoplanets remain still undetermined. Thus, more exoplanet discoveries such as the ones presented in this paper, are needed to understand and constrain giant planets' physical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report of the business meeting of Commission 15 at the 2009 IAU GA is based on notes provided by Walter Huebner, past president, and on the minutes taken by Daniel Boice, secretary of Commission 15 in the triennium 2006 to 2009, with additional notes from the current secretary, Daniel Hestroffer. The business meeting was split into two sessions, the first held on 5 August and the second held on 11 August. This report presents the minutes of the two Commission 15 business-meeting sessions held during General Assembly XXVII.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the magnetospheric structure and the ionospheric Joule Heating of planets orbiting M-dwarf stars in the habitable zone using a set of magnetohydrodynamic models. The stellar wind solution is used to drive a model for the planetary magnetosphere, which is coupled with a model for the planetary ionosphere. Our simulations reveal that the space environment around close-in habitable planets is extreme, and the stellar wind plasma conditions change from sub- to super-Alfvénic along the planetary orbit. As a result, the magnetospheric structure changes dramatically with a bow shock forming in the super-Alfvénic sectors, while no bow shock forms in the sub-Alfvénic sectors. The planets reside most of the time in the sub-Alfvénic sectors with poor atmospheric protection. A significant amount of Joule Heating is provided at the top of the atmosphere as a result of the intense stellar wind. For the steady-state solution, the heating is about 0.1%-3% of the total incoming stellar irradiation, and it is enhanced by 50% for the time-dependent case. The significant Joule Heating obtained here should be considered in models for the atmospheres of habitable planets in terms of the thickness of the atmosphere, the top-side temperature and density, the boundary conditions for the atmospheric pressure, and particle radiation and transport. Here we assume constant ionospheric Pedersen conductance similar to that of the Earth. The conductance could be greater due to the intense EUV radiation leading to smaller heating rates. We plan to quantify the ionospheric conductance in future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have collected initial evidence that tidal interaction between a late-type star and its close-in, massive planet can lead to a spin-up of the host star. We propose to explore this further by studying a small sample of proper motion pairs in which one of the stars is orbited a Hot Jupiter. We will determine if the gyrochronal age is different for the two stars, which would indicate a tidal spin up of the planet host star. We propose to observe 3 such systems with XMM, and to perform similar Chandra observations of 3 more systems with angular separations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bajo la forma de preguntas y respuestas trata de despertar la curiosidad por la astronomía haciendo hincapié en las características e interrelaciones de las estrellas y planetas en nuestra galaxia. Exploran diversos aspectos de la astronomía, incluyendo el sistema solar, estrellas, planetas, lunas, asteroides y cometas. Recomendado para niños de ocho a doce años.