931 resultados para Planetary chemistry


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical mechanism of the (1)PN formation was successfully studied by using the CCSD(T)/6-311++G(3df,3pd) level of theory. The (1)NH(3) + (3)PH and (4)P + NH(3) reaction paths are not energetically favorable to form the (1)PN molecule. However, the (3)NH + (3)PH, (4)N + (3)PH(3), (4)N + (3)PH, (4)P + (3)NH, and (4)P + (2)NH(2) reaction paths to form the (1)PN molecule are only energetically favorable by taking place through specific transition states to form the (1)PN molecule. The NH(3) + (3)PH, (4)N + (1)PH(3), NH(3) + (4)P, and (4)N + (2)PH(2) reactions are spin-forbidden and the probability of hopping for these reactions was estimated to be 0 by the Landau-Zener theory. This is the first detailed study on the chemical mechanism for the (1)PN formation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Context. Detections of molecular lines, mainly from H-2 and CO, reveal molecular material in planetary nebulae. Observations of a variety of molecules suggest that the molecular composition in these objects differs from that found in interstellar clouds or in circumstellar envelopes. The success of the models, which are mostly devoted to explain molecular densities in specific planetary nebulae, is still partial however. Aims. The present study aims at identifying the influence of stellar and nebular properties on the molecular composition of planetary nebulae by means of chemical models. A comparison of theoretical results with those derived from the observations may provide clues to the conditions that favor the presence of a particular molecule. Methods. A self-consistent photoionization numerical code was adapted to simulate cold molecular regions beyond the ionized zone. The code was used to obtain a grid of models and the resulting column densities are compared with those inferred from observations. Results. Our models show that the inclusion of an incident flux of X-rays is required to explain the molecular composition derived for planetary nebulae. We also obtain a more accurate relation for the N(CO)/N(H-2) ratio in these objects. Molecular masses obtained by previous works in the literature were then recalculated, showing that these masses can be underestimated by up to three orders of magnitude. We conclude that the problem of the missing mass in planetary nebulae can be solved by a more accurate calculation of the molecular mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It can be assumed that the composition of Mercury’s thin gas envelope (exosphere) is related to the composition of the planets crustal materials. If this relationship is true, then inferences regarding the bulk chemistry of the planet might be made from a thorough exospheric study. The most vexing of all unsolved problems is the uncertainty in the source of each component. Historically, it has been believed that H and He come primarily from the solar wind, while Na and K originate from volatilized materials partitioned between Mercury’s crust and meteoritic impactors. The processes that eject atoms and molecules into the exosphere of Mercury are generally considered to be thermal vaporization, photonstimulated desorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its own temporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly elliptical orbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperature and experiences differences of insolation with longitude. We will discuss these processes but focus more on the expected surface composition and solar wind particle sputtering which releases material like Ca and other elements from the surface minerals and discuss the relevance of composition modelling

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years a number of chemistry-climate models have been developed with an emphasis on the stratosphere. Such models cover a wide range of time scales of integration and vary considerably in complexity. The results of specific diagnostics are here analysed to examine the differences amongst individual models and observations, to assess the consistency of model predictions, with a particular focus on polar ozone. For example, many models indicate a significant cold bias in high latitudes, the “cold pole problem”, particularly in the southern hemisphere during winter and spring. This is related to wave propagation from the troposphere which can be improved by improving model horizontal resolution and with the use of non-orographic gravity wave drag. As a result of the widely differing modelled polar temperatures, different amounts of polar stratospheric clouds are simulated which in turn result in varying ozone values in the models. The results are also compared to determine the possible future behaviour of ozone, with an emphasis on the polar regions and mid-latitudes. All models predict eventual ozone recovery, but give a range of results concerning its timing and extent. Differences in the simulation of gravity waves and planetary waves as well as model resolution are likely major sources of uncertainty for this issue. In the Antarctic, the ozone hole has probably reached almost its deepest although the vertical and horizontal extent of depletion may increase slightly further over the next few years. According to the model results, Antarctic ozone recovery could begin any year within the range 2001 to 2008. The limited number of models which have been integrated sufficiently far indicate that full recovery of ozone to 1980 levels may not occur in the Antarctic until about the year 2050. For the Arctic, most models indicate that small ozone losses may continue for a few more years and that recovery could begin any year within the range 2004 to 2019. The start of ozone recovery in the Arctic is therefore expected to appear later than in the Antarctic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents optical and electrical measurements on plasma generated by DC excited glow discharges in mixtures composed of 95% N2, 4.8% CH4 and 0.2% H2O at pressures varying from 1.064 mbar to 4.0 mbar. The discharges simulate the chemical reactions that may occur in Titan's atmosphere in the presence of meteorites and ice debris coming from Saturn's systems, assisted by cosmic rays and high energy charged particles. The results obtained from actinometric optical emission spectroscopy, combined with the results from a pulsed Langmuir probe, show that chemical species CH, CN, NH and OH are important precursors in the synthesis of the final solid products and that the chemical kinetics is essentially driven by electronic collision processes. It is shown that the presence of water is sufficient to produce complex solid products whose components are important in prebiotic compound synthesis. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The land-atmosphere exchange of atmospheric trace gases is sensitive to meteorological conditions and climate change. It contributes in turn to the atmospheric radiative forcing through its effects on tropospheric chemistry. The interactions between the hydrological cycle and atmospheric processes are intricate and often involve different levels of feedbacks. The Earth system model EMAC is used in this thesis to assess the direct role of the land surface components of the terrestrial hydrological cycle in the emissions, deposition and transport of key trace gases that control tropospheric chemistry. It is also used to examine its indirect role in changing the tropospheric chemical composition through the feedbacks between the atmospheric and the terrestrial branches of the hydrological cycle. Selected features of the hydrological cycle in EMAC are evaluated using observations from different data sources. The interactions between precipitation and the water vapor column, from the atmospheric branch of the hydrological cycle, and evapotranspiration, from its terrestrial branch, are assessed specially for tropical regions. The impacts of changes in the land surface hydrology on surface exchanges and the oxidizing chemistry of the atmosphere are assessed through two sensitivity simulations. In the first, a new parametrization for rainfall interception in the densely vegetated areas in the tropics is implemented, and its effects are assessed. The second study involves the application of a soil moisture forcing that replaces the model calculated soil moisture. Both experiments have a large impact on the local hydrological cycle, dry deposition of soluble and insoluble gases, emissions of isoprene through changes in surface temperature and the Planetary Boundary Layer height. Additionally the soil moisture forcing causes changes in local vertical transport and large-scale circulation. The changes in trace gas exchanges affect the oxidation capacity of the atmosphere through changes in OH, O$_3$, NO$_x$ concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To increase our understanding of the mechanisms that control the distribution of Al and Ti within marine sediment, we performed sequential extractions targeting the chemical signatures of the loosely bound, exchangeable, carbonate, oxide, organic, opal, and residual fraction of sediment from a carbonate-dominated regime (equatorial Pacific) and from a mixed opal-terrigenous regime (West Antarctic Peninsula). We observe a systematic partitioning of Al and Ti between sediment phases that is related to bulk Al/Ti. We show that, where we can quantify an Al(excess) component, the dissolved Al is preferentially affiliated with the oxide fraction, resulting in Al/Ti molar ratios of 500-3000. This is interpreted as the result of surface complexation in the water column of dissolved Al onto oxyhydroxides. We also observe a previously undetected Ti(excess) with as much as 80% of the total Ti in the organic fraction, which is most likely a function of metal-organic colloidal removal from the water column. In samples where the excess metals are obscured by the detrital load, the Al and Ti are almost exclusively found in the residual phase. This argues for the paired removal of Al (preferentially by the oxide component) and Ti (preferentially by the organic component) from the water column by settling particulate matter. This research builds upon earlier work that shows changes in the bulk ratio of Al to Ti in carbonate sediment from the central-equatorial Pacific that coincide with changes in the sedimentary bulk accumulation rate (BAR). The ratios that are observed are as much as three times higher than typical shale values, and were interpreted as the result of scavenging of dissolved Al onto particles settling in the water column. Because this non-terrigenous Al(excess) accounts for up to 50% of the total sedimentary Al inventory and correlates best with BAR, the bulk Al/Ti may be a sensitive tracer of particle flux and, therefore, export production. Because we show that the excess metals are the result of scavenging processes, the bulk Al/Ti may be considered a sensitive proxy for this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geochemical implications of thermally driven flow of seawater through oceanic crust on the mid-ocean ridge flank have been examined on a well-studied 80 km transect across the eastern flank of the Juan de Fuca Ridge at 48°N, using porewater and basement fluid samples obtained on ODP Leg 168. Fluid flow is recognised by near-basement reversals in porewater concentration gradients from altered values in the sediment section to seawater-like values in basaltic basement. In general, the basement fluids become more geochemically evolved with distance from the ridge and broadly follow basement temperature which ranges from not, vert, similar16° to 63°C. Although thermal effects of advective heat exchange are only seen within 20 km east of where basement is exposed near the ridge crest, chemical reactivity extends to all sites. Seawater passing through oceanic crust has reacted with basement rocks leading to increases in Ca2+ and decreases in alkalinity, Mg2+, Na+, K+, SO42- and delta18O. Sr isotope exchange between seawater and oceanic crust off axis is unequivocally demonstrated with endmember 87Sr/86Sr ~ 0.707. Evidence of more evolved fluids is seen at sites where rapid upwelling of fluids through sediments occurs. Chlorinities of the basement fluids are consistent with post-glacial seawater and thus a short residence time in the crust. Rates of lateral flow have been by estimated by modelling porewater sulphate gradients, using Cl as a glacial chronometer, and from radiocarbon dating of basal fluids. All three methods reveal fluid flow with 14C ages less than 10,000 yr and particle velocities of ~1-5 m/yr, in agreement with thermally constrained volumetric flow rates through a ~600 m thick permeable layer of ~10% porosity. Delta(element)/Delta(heat) extraction ratios are similar to values for ridge-crest hydrothermal systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Eocene microtektites and crystal-bearing microkrystites extracted from DSDP and ODP cores from the Atlantic, Pacific, and Indian oceans have been analyzed to address their provenance. A new analysis of Nd and Sr isotopic compositions confirms previous work and the assignment of the uppermost microtektite layer to the North American tektites, which are associated with the 35.5 Ma, 85 km diameter Chesapeake impact structure of Virginia, USA. Extensive major element and Nd and Sr isotopic analyses of the microkrystites from the lowermost layer were obtained. The melanocratic microkrystites from Sites 216 and 462 in the Indian and Pacific oceans possess major element chemistries, Sr and Nd isotopic signatures and Sm-Nd, T CHUR, model ages similar to those of tagamite melt rocks in the Popigai impact structure. They also possess Rb-Sr, T UR, model ages that are younger than the tagamite TCHUR ages by up to ~1 Ga, which require a process, as yet undefined, of Rb/Sr enrichment. These melanocratic microkrystites are consistent with a provenance from the 35.7 Ma, 100 km diameter Popigai impact structure of Siberia, Russia, while ruling out other contemporaneous structures as a source. Melanocratic microkrystites from other sites and leucocratic microkrystites from all sites possess a wide range of isotopic compositions (epsilon (143Nd) values of -16 to -27.7 and epsilon (87Sr) values of 4.1-354.0), making the association with Popigai tagamites less clear. These microkrystites may have been derived by the melting of target rocks of mixed composition, which were ejected without homogenization. Dark glass and felsic inclusions extracted from Popigai tagamites possess epsilon (143Nd) and epsilon (87Sr) values of -26.7 to -27.8 and 374.7 and 432.4, respectively, and T CHUR and T UR model ages of 1640-1870 Ma and 240-1830 Ma, respectively, which require the preservation of initially present heterogeneity in the source materials. The leucocratic microkrystites possess diverse isotopic compositions that may reflect the melting of supra-basement sedimentary rocks from Popigai, or early basement melts that were ejected prior to homogenization of the Popigai tagamites. The ejection of melt rocks with chemistries consistent with a basement provenance, rather than the surface ~1 km of sedimentary cover rocks, atypically indicates a non-surficial source to some of the ejecta. Microkrystites from two adjacent biozones possess statistically indistinguishable major element compositions, suggesting they have a single source. The occurrence of microkrystites derived from a single impact event, but in different biozones, can be explained by: (1) diachronous biozone boundaries; (2) post-accumulation sedimentary reworking; or (3) erroneous biozonation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique record of the chemical evolution of seawater during hydrothermal recharge into oceanic crust is preserved by anhydrite from the volcanic sequences and sheeted dike complex in ODP Hole 504B. Chemical and isotopic analyses 87Sr/86Sr, delta18O, delta34S of anhydrite constrain the changing composition of fluids due to reaction with basalt. There is a general trend of decreasing 87Sr/86Sr of anhydrite, corresponding to the minor incorporation of basaltic strontium with depth in the volcanic rocks. 87Sr/86Sr ratios decrease rapidly with depth in the dikes to values identical to host basalt (0.7029). Sr/Ca ratios (<0.1 mmol/mol) suggest that recharge fluids have very low Sr concentrations and fluids evolve by first precipitating Sr-bearing phases before extensive exchange of Sr with the host basalt. There is a background trend of decreasing sulfate delta18O with depth from +12-13? in the lower volcanics to +7? in the lower sheeted dikes recording an increase in recharge fluid temperature from c. 150° to c. 250°C, and confirming the presence of sulfate in hydrothermal fluids at elevated temperatures. From the amount of anhydrite recovered from Hole 504B and the amount of seawater sulfur that has been reduced to sulfide, a minimum seawater recharge flux can be calculated. This value is 4-25 times lower than estimates of high-temperature fluid fluxes based on either thermal constraints or global chemical budgets and suggests that there is significant deficit of seawater-derived sulfur in the oceanic crust. Only a minor proportion of the seawater that percolates into the crust near the axis is heated to high temperatures and exits as black smoker-type fluids. A significant proportion of the axial heat loss must be advected at 200-250°C by sulfate-bearing hydrothermal solutions that egress diffusely from the crust. These fluids penetrate into the dikes and exchange both heat and chemical tracers without the extensive clogging of porosity by anhydrite precipitation, which would halt hydrothermal circulation for any reasonable fluid flux. The heating of the major proportion of hydrothermal fluids to only moderate temperatures (c. 250°C) reconciles estimates of hydrothermal fluxes derived from thermal models and global geochemical budgets. The flux of hydrothermal sulfate would be of a magnitude similar to the riverine input, and oxygen-isotopic exchange at 200-250°C between dissolved sulfate and recharge fluids during hydrothermal circulation provides a mechanism to continuously buffer seawater sulfate oxygen to the light isotopic composition observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentrations of the platinum-group elements (PGE) Ir, Ru, Pt and Pd were determined in 11 abyssal peridotites from ODP Sites 895 and 920, as well in six ultramafic rocks from the Horoman peridotite body, Japan, which is generally thought to represent former asthenospheric mantle. Individual oceanic peridotites from ODP drill cores are characterized by variable absolute and relative PGE abundances, but the average PGE concentrations of both ODP suites are very similar. This indicates that the distribution of the noble metals in the mantle is characterized by small-scale heterogeneity and large-scale homogeneity. The mean Ru/Ir and Pt/Ir ratios of all ODP peridotites are within 15% and 3%, respectively, of CI-chondritic values. These results are consistent with models that advocate that a late veneer of chondritic material provided the present PGE budget of the silicate Earth. The data are not reconcilable with the addition of a significant amount of differentiated outer core material to the upper mantle. Furthermore, the results of petrogenetic model calculations indicate that the addition of sulfides derived from percolating magmas may be responsible for the variable and generally suprachondritic Pd/Ir ratios observed in abyssal peridotites. Ultramafic rocks from the Horoman peridotite have PGE signatures distinct from abyssal peridotites: Pt/Ir and Pd/Ir are correlated with lithophile element concentrations such that the most fertile lherzolites are characterized by non-primitive PGE ratios. This indicates that processes more complex than simple in-situ melt extraction are required to produce the geochemical systematics, if the Horoman peridotite formed from asthenospheric mantle with chondritic relative PGE abundances. In this case, the PGE results can be explained by melt depletion accompanied or followed by mixing of depleted residues with sulfides, with or without the addition of basaltic melt.