968 resultados para Planar Point Set


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show the existence of sets with n points (n ? 4) for which every convex decomposition contains more than (35/32)n?(3/2) polygons,which refutes the conjecture that for every set of n points there is a convex decomposition with at most n+C polygons. For sets having exactly three extreme pointswe show that more than n+sqr(2(n ? 3))?4 polygons may be necessary to form a convex decomposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lecture notes about point set toplogy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Point pattern matching in Euclidean Spaces is one of the fundamental problems in Pattern Recognition, having applications ranging from Computer Vision to Computational Chemistry. Whenever two complex patterns are encoded by two sets of points identifying their key features, their comparison can be seen as a point pattern matching problem. This work proposes a single approach to both exact and inexact point set matching in Euclidean Spaces of arbitrary dimension. In the case of exact matching, it is assured to find an optimal solution. For inexact matching (when noise is involved), experimental results confirm the validity of the approach. We start by regarding point pattern matching as a weighted graph matching problem. We then formulate the weighted graph matching problem as one of Bayesian inference in a probabilistic graphical model. By exploiting the existence of fundamental constraints in patterns embedded in Euclidean Spaces, we prove that for exact point set matching a simple graphical model is equivalent to the full model. It is possible to show that exact probabilistic inference in this simple model has polynomial time complexity with respect to the number of elements in the patterns to be matched. This gives rise to a technique that for exact matching provably finds a global optimum in polynomial time for any dimensionality of the underlying Euclidean Space. Computational experiments comparing this technique with well-known probabilistic relaxation labeling show significant performance improvement for inexact matching. The proposed approach is significantly more robust under augmentation of the sizes of the involved patterns. In the absence of noise, the results are always perfect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a kernel density correlation based nonrigid point set matching method and shows its application in statistical model based 2D/3D reconstruction of a scaled, patient-specific model from an un-calibrated x-ray radiograph. In this method, both the reference point set and the floating point set are first represented using kernel density estimates. A correlation measure between these two kernel density estimates is then optimized to find a displacement field such that the floating point set is moved to the reference point set. Regularizations based on the overall deformation energy and the motion smoothness energy are used to constraint the displacement field for a robust point set matching. Incorporating this non-rigid point set matching method into a statistical model based 2D/3D reconstruction framework, we can reconstruct a scaled, patient-specific model from noisy edge points that are extracted directly from the x-ray radiograph by an edge detector. Our experiment conducted on datasets of two patients and six cadavers demonstrates a mean reconstruction error of 1.9 mm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* A preliminary version of this paper was presented at XI Encuentros de Geometr´ia Computacional, Santander, Spain, June 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large-scale mechanical products, such as aircraft and rockets, consist of large numbers of small components, which introduce additional difficulty for assembly accuracy and error estimation. Planar surfaces as key product characteristics are usually utilised for positioning small components in the assembly process. This paper focuses on assembly accuracy analysis of small components with planar surfaces in large-scale volume products. To evaluate the accuracy of the assembly system, an error propagation model for measurement error and fixture error is proposed, based on the assumption that all errors are normally distributed. In this model, the general coordinate vector is adopted to represent the position of the components. The error transmission functions are simplified into a linear model, and the coordinates of the reference points are composed by theoretical value and random error. The installation of a Head-Up Display is taken as an example to analyse the assembly error of small components based on the propagation model. The result shows that the final coordination accuracy is mainly determined by measurement error of the planar surface in small components. To reduce the uncertainty of the plane measurement, an evaluation index of measurement strategy is presented. This index reflects the distribution of the sampling point set and can be calculated by an inertia moment matrix. Finally, a practical application is introduced for validating the evaluation index.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The n-interior point variant of the Erdos-Szekeres problem is to show the following: For any n, n-1, every point set in the plane with sufficient number of interior points contains a convex polygon containing exactly n-interior points. This has been proved only for n-3. In this paper, we prove it for pointsets having atmost logarithmic number of convex layers. We also show that any pointset containing atleast n interior points, there exists a 2-convex polygon that contains exactly n-interior points.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The n-interior-point variant of the Erdos Szekeres problem is the following: for every n, n >= 1, does there exist a g(n) such that every point set in the plane with at least g(n) interior points has a convex polygon containing exactly n interior points. The existence of g(n) has been proved only for n <= 3. In this paper, we show that for any fixed r >= 2, and for every n >= 5, every point set having sufficiently large number of interior points and at most r convex layers contains a subset with exactly n interior points. We also consider a relaxation of the notion of convex polygons and show that for every n, n >= 1, any point set with at least n interior points has an almost convex polygon (a simple polygon with at most one concave vertex) that contains exactly n interior points. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given a point set P and a class C of geometric objects, G(C)(P) is a geometric graph with vertex set P such that any two vertices p and q are adjacent if and only if there is some C is an element of C containing both p and q but no other points from P. We study G(del)(P) graphs where del is the class of downward equilateral triangles (i.e., equilateral triangles with one of their sides parallel to the x-axis and the corner opposite to this side below that side). For point sets in general position, these graphs have been shown to be equivalent to half-Theta(6) graphs and TD-Delaunay graphs. The main result in our paper is that for point sets P in general position, G(del)(P) always contains a matching of size at least vertical bar P vertical bar-1/3] and this bound is tight. We also give some structural properties of G(star)(P) graphs, where is the class which contains both upward and downward equilateral triangles. We show that for point sets in general position, the block cut point graph of G(star)(P) is simply a path. Through the equivalence of G(star)(P) graphs with Theta(6) graphs, we also derive that any Theta(6) graph can have at most 5n-11 edges, for point sets in general position. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let T : M → M be a smooth involution on a closed smooth manifold and F = n j=0 F j the fixed point set of T, where F j denotes the union of those components of F having dimension j and thus n is the dimension of the component of F of largest dimension. In this paper we prove the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is even and F has one of the following forms: 1) F = F n ∪ F 3 ∪ F 2 ∪ {point}; 2) F = F n ∪ F 3 ∪ F 2 ; 3) F = F n ∪ F 3 ∪ {point}; or 4) F = F n ∪ F 3 . Also, suppose that the normal bundles of F n, F 3 and F 2 in M do not bound. If k denote the codimension of F n, then k ≤ 4. Further, we construct involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and 3) when n is of the form n = 4t, with t ≥ 1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Delaunay and Gabriel graphs are widely studied geo-metric proximity structures. Motivated by applications in wireless routing, relaxed versions of these graphs known as Locally Delaunay Graphs (LDGs) and Lo-cally Gabriel Graphs (LGGs) have been proposed. We propose another generalization of LGGs called Gener-alized Locally Gabriel Graphs (GLGGs) in the context when certain edges are forbidden in the graph. Unlike a Gabriel Graph, there is no unique LGG or GLGG for a given point set because no edge is necessarily in-cluded or excluded. This property allows us to choose an LGG/GLGG that optimizes a parameter of interest in the graph. We show that computing an edge max-imum GLGG for a given problem instance is NP-hard and also APX-hard. We also show that computing an LGG on a given point set with dilation ≤k is NP-hard. Finally, we give an algorithm to verify whether a given geometric graph G= (V, E) is a valid LGG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of finding an optimal vertex cover in a graph is a classic NP-complete problem, and is a special case of the hitting set question. On the other hand, the hitting set problem, when asked in the context of induced geometric objects, often turns out to be exactly the vertex cover problem on restricted classes of graphs. In this work we explore a particular instance of such a phenomenon. We consider the problem of hitting all axis-parallel slabs induced by a point set P, and show that it is equivalent to the problem of finding a vertex cover on a graph whose edge set is the union of two Hamiltonian Paths. We show the latter problem to be NP-complete, and also give an algorithm to find a vertex cover of size at most k, on graphs of maximum degree four, whose running time is 1.2637(k) n(O(1)).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The classical Erdos-Szekeres theorem states that a convex k-gon exists in every sufficiently large point set. This problem has been well studied and finding tight asymptotic bounds is considered a challenging open problem. Several variants of the Erdos-Szekeres problem have been posed and studied in the last two decades. The well studied variants include the empty convex k-gon problem, convex k-gon with specified number of interior points and the chromatic variant. In this paper, we introduce the following two player game variant of the Erdos-Szekeres problem: Consider a two player game where each player playing in alternate turns, place points in the plane. The objective of the game is to avoid the formation of the convex k-gon among the placed points. The game ends when a convex k-gon is formed and the player who placed the last point loses the game. In our paper we show a winning strategy for the player who plays second in the convex 5-gon game and the empty convex 5-gon game by considering convex layer configurations at each step. We prove that the game always ends in the 9th step by showing that the game reaches a specific set of configurations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let be a set of points in the plane. A geometric graph on is said to be locally Gabriel if for every edge in , the Euclidean disk with the segment joining and as diameter does not contain any points of that are neighbors of or in . A locally Gabriel graph(LGG) is a generalization of Gabriel graph and is motivated by applications in wireless networks. Unlike a Gabriel graph, there is no unique LGG on a given point set since no edge in a LGG is necessarily included or excluded. Thus the edge set of the graph can be customized to optimize certain network parameters depending on the application. The unit distance graph(UDG), introduced by Erdos, is also a LGG. In this paper, we show the following combinatorial bounds on edge complexity and independent sets of LGG: (i) For any , there exists LGG with edges. This improves upon the previous best bound of . (ii) For various subclasses of convex point sets, we show tight linear bounds on the maximum edge complexity of LGG. (iii) For any LGG on any point set, there exists an independent set of size .

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents some further results on proximal and asymptotic proximal contractions and on a class of generalized weak proximal contractions in metric spaces. The generalizations are stated for non-self-mappings of the forms for and , or , subject to and , such that converges uniformly to T, and the distances are iteration-dependent, where , , and are non-empty subsets of X, for , where is a metric space, provided that the set-theoretic limit of the sequences of closed sets and exist as and that the countable infinite unions of the closed sets are closed. The convergence of the sequences in the domain and the image sets of the non-self-mapping, as well as the existence and uniqueness of the best proximity points, are also investigated if the metric space is complete. Two application examples are also given, being concerned, respectively, with the solutions through pseudo-inverses of both compatible and incompatible linear algebraic systems and with the parametrical