808 resultados para Plamodium falciparum
Resumo:
Plasmodium falciparum sensitivity to chloroquine (CHL), amodiaquine (AMO) and sulfadoxine/pyrimethamine (SDX/PYR) was assessed in vivo and in vitro in a representative sample from the population of Zaragoza in El Bajo Cauca region (Antioquia-Colombia). There were 94 patients with P. falciparum evaluated. For the in vivo test the patients were followed by clinical examination and microscopy, during 7 days. The in vitro test was performed following the recommendations of the World Health Organization. The in vivo prevalence of resistance to CHL was 67%, to AMO 3% and to SDX/PYR 9%. The in vitro test showed sensitivity to all antimalarials evaluated. Concordance for CHL between the in vivo and in vitro tests was 33%. For AMO and SDX/PYR, the concordance was 100%. We conclude that a high percentage of patients are resistant to CHL (in vivo). A high rate of intestinal parasitism might explain in part, the differences observed between the in vivo and the in vitro results. Therefore, new policies and treatment regimens should be proposed for the treatment of the infection in the region. Nationwide studies assessing the degree of resistance are needed.
Resumo:
No período compreendido entre janeiro de 1996 e dezembro de 1998, administramos derivados da artemisinina em 108 crianças com malária por Plasmodium falciparum, para avaliar a resposta clínica e terapêutica. Foram incluídas apenas crianças com clínica de malária moderada ou grave. No Grupo I, incluímos 62 pacientes e administramos artesunate por via endovenosa. Clinicamente, 50,8% tinham malária moderada e 49,2% malária grave; a parasitemia foi baixa em 53,2%, média em 22,6% e alta em 24,2%; no D2 a parasitemia estava negativa em 58,1%. No Grupo II,incluímos 46 pacientes que receberam artemeter (Paluter®) intramuscular. Clinicamente, 67,4% apresentavam malária moderada e 32,6% malária grave; a parasitemia foi baixa em 52,2%, média em 36,2% e alta em 15,2%; em D2, 56,5% apresentaram negativação da parasitemia. Nos dois grupos, a melhora clínica e evolução da parasitemia não mostraram diferença estatística; no D7 havia clareada a parasitemia em todos os pacientes. Para evitar recrudescência usamos mefloquina ou clindamicina.
Resumo:
O objetivo desta pesquisa foi avaliar o comportamento dos níveis séricos de cortisol e dehidroepiandrosterona (DHEA) em pacientes com malária por Plasmodium falciparum. Como o cortisol apresenta um efeito imunossupressor e o DHEA um efeito imunoestimulador, estudou- se a correlação entre os níveis destes esteróides e a condição clínica do paciente de malária. A amostra constou de 24 pacientes com malária por P. falciparum não-complicada, sendo 18 do sexo masculino e 6 do sexo feminino, com idade variando de 15 a 47 anos, 12 primoinfectados e 12 multi-infectados, provenientes de área endêmica de malária da Amazônia. Coletaram-se amostras diárias de sangue de 20 em 20 minutos no pré-tratamento (D0), 24 horas após o início da medicação (D1) e no 8º dia de acompanhamento (D7), quando o paciente já se encontrava assintomático. Todos os pacientes apresentavam parasitemia negativa em D7. Dosaram-se: os níveis séricos de cortisol em D0, D1 e D7; DHEA em D0 e D7; os níveis de anticorpos totais IgG anti-P. falciparum, anti-P. vivax, e anticorpos IgM anti-P. falciparum em D0. Comparam-se os níveis séricos de cortisol dos três dias, concluindo-se que os níveis de cortisol eram significativamente mais elevados em D0 do que nos outros dias. Foram correlacionados os níveis de cortisol com a parasitemia, obtendo-se como significativas as correlações entre cortisol D0 e parasitemia D1, assim como cortisol D1 com parasitemia D1, levando-se a deduzir que o cortisol pode interferir na resposta inicial à terapêutica de pacientes com malária por P. falciparum. O cortisol foi correlacionado com a temperatura, tempo de evolução da doença, níveis de anticorpos IgG anti-P. falciparum, não se obtendo resultados estatisticamente significativos, levando a inferir que a temperatura não interfere nos níveis de cortisol e o mesmo não interfere nos níveis de anticorpos, e não apresenta variações importantes com o tempo de evolução da doença. Os níveis de DHEA em D0, foram significativamente mais elevados do que em D7, apesar dos pacientes estarem sintomáticos há mais de um dia, já que um estímulo mantido do eixo hipotálamo-hipófise-adrenal (HPA) leva a uma diminuição deste esteróide. O DHEA foi correlacionado com a parasitemia obtendo-se um resultado significativo na correlação DHEA D0 com parasitemia D1. A correlação entre cortisol e DHEA em D0 não foi significativa (p = 0,057), porém este resultado leva a crer que o DHEA acompanha o aumento dos níveis de cortisol. Obteve-se uma correlação negativa entre DHEA e tempo de evolução de doença, apesar destes níveis estarem aumentados no pré-tratamento. Calculou-se a correlação parcial entre cortisol, DHEA e temperatura, concluindo-se que a temperatura interfere positivamente na correlação cortisol e DHEA. Uma vez que a febre reflete o momento em que ocorre a lise das hemácias secundária a esquizogonia, provavelmente esta lise com conseqüente liberação de citocinas serve como um fator agudizador da estimulação do eixo HPA, sugerindo que a liberação dos dois hormônios apresenta mecanismo comum. A correlação entre DHEA e anticorpos não foi significativa, portanto o DHEA não deve interferir na produção de anticorpos de pacientes com malária por P. falciparum.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and thus drugs that inhibit human PNP activity have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Besides, the purine salvage pathway is the only possible way for apicomplexan parasites to obtain the building blocks for RNA and DNA synthesis, which makes PNP from these parasites an attractive target for drug development against diseases such as malaria. Hence, a number of research groups have made efforts to elucidate the mechanism of action of PNP based on structural and kinetic studies. It is conceivable that the mechanism may be different for PNPs from diverse sources, and influenced by the oligomeric state of the enzyme in solution. Furthermore, distinct transition state structures can make possible the rational design of specific inhibitors for human and apicomplexan enzymes. Here, we review the current status of these research efforts to elucidate the mechanism of PNP-catalyzed chemical reaction, focusing on the mammalian and Plamodium falciparum enzymes, targets for drug development against, respectively, T-Cell and Apicomplexan parasites-mediated diseases.
Resumo:
In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms.
Resumo:
The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.
Resumo:
Background: Cytoadherence of Plasmodium falciparum-infected red blood cells is mediated by var gene-encoded P. falciparum erythrocyte membrane protein-1 and host receptor preference depends in most cases on which of the 50-60 var genes per genome is expressed. Enrichment of phenotypically homogenous parasites by panning on receptor expressing cells is fundamental for the identification of the corresponding var transcript. Methods: P. falciparum 3D7 parasites were panned on several transfected CHO-cell lines and their var transcripts analysed by i) reverse transcription/PCR/cloning/sequencing using a universal DBL alpha specific oligonucleotide pair and ii) by reverse transcription followed by quantitative PCR using 57 different oligonucleotide pairs. Results: Each cytoadherence selected parasite line also adhered to untransfected CHO-745 cells and upregulation of the var gene PFD995/PFD1000c was consistently associated with cytoadherence to all but one CHO cell line. In addition, parasites panned on different CHO cell lines revealed candidate var genes which reproducibly associated to the respective cytoadherent phenotype. The transcription profile obtained by RT-PCR/cloning/sequencing differed significantly from that of RT-quantitative PCR. Conclusion: Transfected CHO cell lines are of limited use for the creation of monophenotypic cytoadherent parasite lines. Nevertheless, 3D7 parasites can be reproducibly selected for the transcription of different determined var genes without genetic manipulation. Most importantly, var transcription analysis by RT-PCR/cloning/sequencing may lead to erroneous interpretation of var transcription profiles.
Resumo:
Background: The malaria parasite Plasmodium falciparum exhibits abundant genetic diversity, and this diversity is key to its success as a pathogen. Previous efforts to study genetic diversity in P. falciparum have begun to elucidate the demographic history of the species, as well as patterns of population structure and patterns of linkage disequilibrium within its genome. Such studies will be greatly enhanced by new genomic tools and recent large-scale efforts to map genomic variation. To that end, we have developed a high throughput single nucleotide polymorphism (SNP) genotyping platform for P. falciparum. Results: Using an Affymetrix 3,000 SNP assay array, we found roughly half the assays (1,638) yielded high quality, 100% accurate genotyping calls for both major and minor SNP alleles. Genotype data from 76 global isolates confirm significant genetic differentiation among continental populations and varying levels of SNP diversity and linkage disequilibrium according to geographic location and local epidemiological factors. We further discovered that nonsynonymous and silent (synonymous or noncoding) SNPs differ with respect to within-population diversity, interpopulation differentiation, and the degree to which allele frequencies are correlated between populations. Conclusions: The distinct population profile of nonsynonymous variants indicates that natural selection has a significant influence on genomic diversity in P. falciparum, and that many of these changes may reflect functional variants deserving of follow-up study. Our analysis demonstrates the potential for new high-throughput genotyping technologies to enhance studies of population structure, natural selection, and ultimately enable genome-wide association studies in P. falciparum to find genes underlying key phenotypic traits.
Resumo:
The current prediction or genes in the Plasmodium falciparum genome database relies upon a limited number of specially developed computer algorithms. We have re-annotated the sequence of chromosome 2 of P. falciparum by a computer-assisted manual analysis. which is described here. Of 161 newly predicted introns, we have experimentally confirmed 98. We regard 110 introns from the previously published analyses as probable, we delete 3, change 26 and add 135. We recognise 214 genes in chromosome 2. We have predicted introns in 121 genes. The increased complexity or gene structure on chromosome 2 is likely to be mirrored by the entire genome. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new method has been established to define the limits on a spontaneous mutation rate for a gene in Plasmodium falciparum. The method combines mathematical modelling and large-scale in vitro culturing and calculates the difference in mutant frequencies at 2 separate time-points. We measured the mutation rate at 2 positions in the dihydrofolate reductase (DHFR) gene of 3D7, a pyrimethamine-sensitive line of P. fulciparum. This line was re-cloned and an effectively large population was treated with a selective pyrimethamine concentration of 40 nM. We detected point mutations at codon-46 (TTA to TCA) and codon-108 (ACC to AAC), resulting in serine replacing leucine and asparagine replacing serine respectively in the corresponding gene product. The substitutions caused a decrease in pyrimethamine sensitivity. By mathematical modelling we determined that the mutation rate at a given position in DHFR was low and occurred at less than 2(.)5 x 10(-9) mutations/DHFR gene/replication. This result has important implications for Plasmodium genetic diversity and antimalarial drug therapy by demonstrating that even with lon mutation rates anti-malarial resistance will inevitably arise when mutant alleles are selected under drug pressure.
Resumo:
Within a 199 866 base pair (bp) portion of a Plasmodium vivax chromosome we identified a conserved linkage group consisting of at least 41 genes homologous to Plasmodium falciparum genes located on chromosome 3. There were no P. vivax homologues of the P. falciparum cytoadherence-linked asexual genes clag 3.2, clag 3.1 and a var C pseudogene found on the P. vivax chromosome. Within the conserved linkage group, the gene order and structure are identical to those of P. falciparum chromosome 3. This conserved linkage group may extend to as many as 190 genes. The subtelomeric regions are different in size and the P. vivax segment contains genes for which no P. falciparum homologues have been identified to date. The size difference of at least 900 kb between the homologous P. vivax chromosome and P. falciparum chromosome 3 is presumably due to a translocation. There is substantial sequence divergence with a much higher guanine + cytosine (G + C) content in the DNA and a preference for amino acids using GC-rich codons in the deduced proteins of P. vivax. This structural conservation of homologous genes and their products combined with sequence divergence at the nucleotide level makes the P. vivax genome a powerful tool for comparative analyses of Plasmodium genomes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new algorithm, PfAGSS, for predicting 3' splice sites in Plasmodium falciparum genomic sequences is described. Application of this program to the published P. falciparum chromosome 2 and 3 data suggests that existing programs result in a high error rate in assigning 3' intron boundaries. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A deterministic mathematical model which predicts the probability of developing a new drug-resistant parasite population within the human host is reported, The model incorporates the host's specific antibody response to PfEMP1, and also investigates the influence of chemotherapy on the probability of developing a viable drug-resistant parasite population within the host. Results indicate that early, treatment, and a high antibody threshold coupled with a long lag time between antibody stimulation and activity, are risk factors which increase the likelihood of developing a viable drug-resistant parasite population. High parasite mutation rates and fast PfEMP1 var gene switching are also identified as risk factors. The model output allows the relative importance of the various risk factors as well as the relationships between them to be established, thereby increasing the understanding of the conditions which favour the development of a new drug-resistant parasite population.
Resumo:
Many of the asexual stage Plasmodium falciparum proteins that are the targets of host protective responses are markedly polymorphic. The full repertoire of diversity is not defined for any antigen. Most studies have focused on the genes encoding merozoite surface proteins 1 and 2 (MSP1, MSP2). We explored the extent of diversity of some of the less studied merozoite surface antigens and analyzed the degree of complexity of malaria field isolates by deriving nucleotide sequences of several antigens. We have determined the genotype of apical membrane antigen 1 (AMA1) in a group of 30 field samples, collected over 29 months, from individuals living in an area of intense malaria transmission in Irian Jaya, identifying 14 different alleles. AMA1 genotyping was combined with previously determined MSP2 typing. AMA1 had the greatest power in distinguishing between isolates but methodological problems, especially when mixed infections are present, suggest it is not an ideal typing target. MSP1, MSP3, and glutamate-rich protein genotypes were also determined from a smaller group of samples, and all results were combined to derive an extended antigenic haplotype. Within this subset of 10 patients, nine different genotypes could be discerned; however, five patients were all infected with the same strain. This strain was present in individuals from two separate villages and was still present 12 months later. This strain was predominant at the first time point but had disappeared at the fourth time point. This significant change in malaria genotypes could be due to strain-specific immunity developing in this population.