995 resultados para Plackett-Burman design
Resumo:
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
Resumo:
The chitosanase production was markedly enhanced by substrate induction, statistical optimization of medium composition and culture conditions by Microbacteritan sp. OU01 in shake-flask. A significant influence of (NH4)(2)SO4, MgSO4 center dot 7H(2)O and initial pH on chitosanase production was noted with Plackett-Burman design. It was then revealed with the method of steepest ascent and response surface methodology (RSM) that 19.0 g/L (NH4)(2)SO4, 1.3 g/L MgSO4 and an initial pH of 2.0 were optimum for the production of chitosanase; colloidal chitosan appeared to be the best inducer for chitosanase production by Microbacterium sp. OU01. This optimization strategy led to the enhancement of chitosanase from 3.6 U/mL to 118 U/mL. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Marine sponge cell culture is a potential route for the sustainable production of sponge-derived bioproducts. Development of a basal culture medium is a prerequisite for the attachment, spreading, and growth of sponge cells in vitro. With the limited knowledge available on nutrient requirements for sponge cells, a series of statistical experimental designs has been employed to screen and optimize the critical nutrient components including inorganic salts (ferric ion, zinc ion, silicate, and NaCl), amino acids (glycine, glutamine, and aspartic acid), sugars (glucose, sorbitol, and sodium pyruvate), vitamin C, and mammalian cell medium (DMEM and RPMI 1640) using MTT assay in 96-well plates. The marine sponge Hymeniacidon perleve was used as a model system. Plackett-Burman design was used for the initial screening, which identified the significant factors of ferric ion, NaCl, and vitamin C. These three factors were selected for further optimization by Uniform Design and Response Surface Methodology (RSM), respectively. A basal medium was finally established, which supported an over 100% increase in viability of sponge cells.
Resumo:
Tese de doutoramento, Ciências Biotecnológicas (Biotecnologia Alimentar), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
This study was undertaken to isolate ligninase-producing white-rot fungi for use in the extraction of fibre from pineapple leaf agriwaste. Fifteen fungal strains were isolated from dead tree trunks and leaf litter. Ligninolytic enzymes (lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac)), were produced by solid-state fermentation (SSF) using pineapple leaves as the substrate. Of the isolated strains, the one showing maximum production of ligninolytic enzymes was identified to be Ganoderma lucidum by 18S ribotyping. Single parameter optimization and response surface methodology of different process variables were carried out for enzyme production. Incubation period, agitation, and Tween-80 were identified to be the most significant variables through Plackett-Burman design. These variables were further optimized by Box-Behnken design. The overall maximum yield of ligninolytic enzymes was achieved by experimental analysis under these optimal conditions. Quantitative lignin analysis of pineapple leaves by Klason lignin method showed significant degradation of lignin by Ganoderma lucidum under SSF
Resumo:
In this work a Plackett-Burman Design with 8 factors and 12 trials in 2 levels with 3 repetitions at the center point was used in order to investigate the influence of the concentration of chitosan, peptone, yeast extract, NaNO3, K2HPO4, KCl, MgSO4.7H2O and FeSO4 on chitosanase production by Metarhizium anisopliae. Runs were carried out using submerged discontinuous cultivation for enzyme production. The results of the Plackett & Burman Design showed that only two factors, chitosan concentration as well as FeSO4 had influence on chitosanolytic activity, while the increase in concentration of other factors not contributed significantly to the quitosanolítica activity. Cultivation medium optimization for enzyme production was carried out using a Composite Central Design, with the most important factors for chitosanolytic activity (chitosan and FeSO4), in accordance with Plackett & Burman Design, and keeping the other nutrients in their minimum values. On this other design, it was taken the highest limit in Plackett & Burman Design as the lowest limit (-1) to FeSO4 factor. The results showed that the enzyme production was favoured by increasing the chitosan concentration and by decreasing FeSO4. Maximum production for chitosanolytic activity was about 70.0 U/L and was reached in only 18 h of fermentation, a result about twenty-eight times greater than a former study using the same microorganism (about 2.5 U/L at 48 h)
Resumo:
The extracellular glycerol kinase gene from Saccharomyces cerevisiae (GUT]) was cloned into the expression vector pPICZ alpha. A and integrated into the genome of the methylotrophic yeast Pichia pastoris X-33. The presence of the GUT1 insert was confirmed by PCR analysis. Four clones were selected and the functionality of the recombinant enzyme was assayed. Among the tested clones, one exhibited glycerol kinase activity of 0.32 U/mL, with specific activity of 0.025 U/mg of protein. A medium optimized for maximum biomass production by recombinant Pichia pastoris in shaker cultures was initially explored, using 2.31 % (by volume) glycerol as the carbon source. Optimization was carried out by response surface methodology (RSM). In preliminary experiments, following a Plackett-Burman design, glycerol volume fraction (phi(Gly)) and growth time (t) were selected as the most important factors in biomass production. Therefore, subsequent experiments, carried out to optimize biomass production, followed a central composite rotatable design as a function of phi(Gly) and time. Glycerol volume fraction proved to have a significant positive linear effect on biomass production. Also, time was a significant factor (at linear positive and quadratic levels) in biomass production. Experimental data were well fitted by a convex surface representing a second order polynomial model, in which biomass is a function of both factors (R(2)=0.946). Yield and specific activity of glycerol kinase were mainly affected by the additions of glycerol and methanol to the medium. The optimized medium composition for enzyme production was: 1 % yeast extract, 1 % peptone, 100 mM potassium phosphate buffer, pH=6.0, 1.34 % yeast nitrogen base (YNB), 4.10(-5) % biotin, 1 %, methanol and 1 %, glycerol, reaching 0.89 U/mL of glycerol kinase activity and 14.55 g/L of total protein in the medium after 48 h of growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L−1. Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71–116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples.
Resumo:
Diante da grande quantidade de glicerol bruto gerado na síntese do biodiesel e seu baixo valor comercial, torna-se fundamental encontrar formas alternativas para converter este substrato em produtos com valor agregado. Neste contexto, este trabalho teve como objetivo avaliar diferentes leveduras oleaginosas capazes de metabolizar o glicerol bruto, gerado como coproduto na síntese de biodiesel, visando produzir biomassa como fonte de lipídios. Todos os cultivos foram realizados em frascos agitados, em condições estabelecidas de acordo com cada etapa do trabalho, sendo obtidos dados relativos ao crescimento celular e à produção de lipídios, tratados estatisticamente conforme o propósito. Lipomyces lipofer NRRL Y-1155 apresentou diferenças significativas em relação às outras leveduras oriundas de banco de cultura, atingindo 57,64% de lipídios na biomassa. Estas leveduras apresentarem perfis de ácidos graxos diferenciados, semelhantes aos dos principais óleos vegetais utilizadas na síntese de biodiesel, com predominância de ácidos graxos poli-insaturados, especialmente ácido linoleico (68,3% na levedura Rhodotorula glutinis NRRL YB-252). O ácido gama-linolênico, um ácido graxo essencial ω6, foi detectado em todas as leveduras analisadas, sendo que na biomassa de Candida cylindracea NRRL Y-17506 chegou a 23,1%. Através de um planejamento experimental Plackett-Burman, verificou-se que as variáveis concentração de extrato de levedura e de MgSO4.7H20 demonstraram maior influência na produção de lipídios por uma linhagem silvestre de Rhodotorula mucilaginosa. Para esta levedura, a partir da análise de efeitos foi possível estabelecer a seguinte condição para a produção de lipídios: 30,0 g.L-1 glicerol; 5,0 g.L-1 KH2PO4; 1,0 g.L-1 Na2HPO4; 3,0 g.L-1 MgSO4.7H2O; 1,2 g.L-1 extrato de levedura; pH inicial 4,5; temperatura 25°C. Nestas condições conseguiu-se um teor de lipídios de 59,96% e lipídios totais produzidos de 5,51 g.L-1 . Também foi possível observar aumento no teor de lipídios da biomassa ao longo do tempo de cultivo, bem como o aumento do teor relativo do ácido linoleico, que atingiu 52%. Dentre as leveduras isoladas a partir de amostras ambientais do Extremo Sul do Brasil, a levedura identificada como Cryptococcus humicola se destacou das demais, apresentando proporção de 23,5% de ácidos graxos saturados, 14,8% de ácidos graxos monoinsaturados e 54,9% de ácidos graxos poli-insaturados, destacando-se o ácido linoleico. O planejamento Plackett-Burman foi também utilizado para esta levedura, sendo que as variáveis concentração de extrato de levedura e glicerol bruto demonstraram maior influência na produção de lipídios. Posteriormente, um delineamento composto central rotacional (DCCR) foi proposto visando à otimização da produção de lipídios. Os modelos empíricos preditivos obtidos para biomassa máxima e lipídios totais permitiram estabelecer para a produção de lipídios por Cryptococcus humicola a seguinte condição otimizada: 100,0 g.L-1 glicerol; 5,0 g.L-1 KH2PO4; 1,0 g.L-1 Na2HPO4; 4,8 g.L-1 extrato de levedura; pH inicial 4,5; temperatura 25°C. Esta condição representou um incremento de cerca de 2 vezes nos lipídios totais em relação à melhor condição estabelecida pelo planejamento Plackett-Burmann e um acréscimo de cerca de 4,8 vezes em relação às condições testadas inicialmente, atingindo 37,61% de lipídios e 8,85 g.L-1 de lipídios totais. Deste modo, os propósitos de valorização de um coproduto oriundo da síntese de biodiesel, bem como a produção de um óleo com potencial para a produção de biodiesel, foram cumpridos.
Resumo:
Compiler optimizations help to make code run faster at runtime. When the compilation is done before the program is run, compilation time is less of an issue, but how do on-the-fly compilation and optimization impact the overall runtime? If the compiler must compete with the running application for resources, the running application will take more time to complete. This paper investigates the impact of specific compiler optimizations on the overall runtime of an application. A foldover Plackett and Burman design is used to choose compiler optimizations that appear to contribute to shorter overall runtimes. These selected optimizations are compared with the default optimization levels in the Jikes RVM. This method selects optimizations that result in a shorter overall runtime than the default O0, O1, and O2 levels. This shows that careful selection of compiler optimizations can have a significant, positive impact on overall runtime.
Resumo:
A potential fungal strain producing extracellular β-glucosidase enzyme was isolated from sea water and identified as ^ëéÉêJ Öáääìë=ëóÇçïáá BTMFS 55 by a molecular approach based on 28S rDNA sequence homology which showed 93% identity with already reported sequences of ^ëéÉêÖáääìë=ëóÇçïáá in the GenBank. A sequential optimization strategy was used to enhance the production of β-glucosidase under solid state fermentation (SSF) with wheat bran (WB) as the growth medium. The two-level Plackett-Burman (PB) design was implemented to screen medium components that influence β-glucosidase production and among the 11 variables, moisture content, inoculums, and peptone were identified as the most significant factors for β-glucosidase production. The enzyme was purified by (NH4)2SO4 precipitation followed by ion exchange chromatography on DEAE sepharose. The enzyme was a monomeric protein with a molecular weight of ~95 kDa as determined by SDS-PAGE. It was optimally active at pH 5.0 and 50°C. It showed high affinity towards éNPG and enzyme has a hã and sã~ñ of 0.67 mM and 83.3 U/mL, respectively. The enzyme was tolerant to glucose inhibition with a há of 17 mM. Low concentration of alcohols (10%), especially ethanol, could activate the enzyme. A considerable level of ethanol could produce from wheat bran and rice straw after 48 and 24 h, respectively, with the help of p~ÅÅÜ~êçãóÅÉë=ÅÉêÉîáëá~É in presence of cellulase and the purified β-glucosidase of ^ëéÉêÖáääìë=ëóÇçïáá BTMFS 55.
Resumo:
以根癌土壤杆菌(Agrobacterium tum efaciens)1.1416的突变株AGR 0610为出发菌株,采用P lackett-Burm an设计法(P lackett-Burm an design,P-B)对影响AGR 0610发酵产辅酶Q10的相关因素进行了研究,选取到4种有显著效应的因素:糖蜜、大豆蛋白胨、玉米浆和蛋氨酸.再采用响应曲面法(response surface m ethodology,RSM)对这4种因素的最佳水平范围进一步探讨,得到二次回归方程,优化了培养基组成.当这4种因素分别取值为1.02%、0.49%、0.29%和0.34%时,辅酶Q10产量有最大预测值38.88 mg/L,并被实验所证实.图6表4参8