148 resultados para Pirólise termoquímica


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to produce biofuels (bio-oil and gas) from the thermal treatment of sewage sludge in rotating cylinder, aiming industrial applications. The biomass was characterized by immediate and instrumental analysis (elemental analysis, scanning electron microscopy - SEM, X-ray diffraction, infrared spectroscopy and ICP-OES). A kinetic study on non-stationary regime was done to calculate the activation energy by Thermal Gravimetric Analysis evaluating thermochemical and thermocatalytic process of sludge, the latter being in the presence of USY zeolite. As expected, the activation energy evaluated by the mathematical model "Model-free kinetics" applying techniques isoconversionais was lowest for the catalytic tests (57.9 to 108.9 kJ/mol in the range of biomass conversion of 40 to 80%). The pyrolytic plant at a laboratory scale reactor consists of a rotating cylinder whose length is 100 cm with capable of processing up to 1 kg biomass/h. In the process of pyrolysis thermochemical were studied following parameters: temperature of reaction (500 to 600 ° C), flow rate of carrier gas (50 to 200 mL/min), frequency of rotation of centrifugation for condensation of bio-oil (20 to 30 Hz) and flow of biomass (4 and 22 g/min). Products obtained during the process (pyrolytic liquid, coal and gas) were characterized by classical and instrumental analytical techniques. The maximum yield of liquid pyrolytic was approximately 10.5% obtained in the conditions of temperature of 500 °C, centrifugation speed of 20 Hz, an inert gas flow of 200 mL/min and feeding of biomass 22 g/min. The highest yield obtained for the gas phase was 23.3% for the temperature of 600 °C, flow rate of 200 mL/min inert, frequency of rotation of the column of vapor condensation 30 Hz and flow of biomass of 22 g/min. The non-oxygenated aliphatic hydrocarbons were found in greater proportion in the bio-oil (55%) followed by aliphatic oxygenated (27%). The bio-oil had the following characteristics: pH 6.81, density between 1.05 and 1.09 g/mL, viscosity between 2.5 and 3.1 cSt and highest heating value between 16.91 and 17.85 MJ/ kg. The main components in the gas phase were: H2, CO, CO2 and CH4. Hydrogen was the main constituent of the gas mixture, with a yield of about 46.2% for a temperature of 600 ° C. Among the hydrocarbons formed, methane was found in higher yield (16.6%) for the temperature 520 oC. The solid phase obtained showed a high ash content (70%) due to the abundant presence of metals in coal, in particular iron, which was also present in bio-oil with a rate of 0.068% in the test performed at a temperature of 500 oC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demand for alternative sources of energy drives the technological development so that many fuels and energy conversion processes before judged as inadequate or even non-viable, are now competing fuels and so-called traditional processes. Thus, biomass plays an important role and is considered one of the sources of renewable energy most important of our planet. Biomass accounts for 29.2% of all renewable energy sources. The share of biomass energy from Brazil in the OIE is 13.6%, well above the world average of participation. Various types of pyrolysis processes have been studied in recent years, highlighting the process of fast pyrolysis of biomass to obtain bio-oil. The continuous fast pyrolysis, the most investigated and improved are the fluidized bed and ablative, but is being studied and developed other types in order to obtain Bio-oil a better quality, higher productivity, lower energy consumption, increased stability and process reliability and lower production cost. The stability of the product bio-oil is fundamental to designing consumer devices such as burners, engines and turbines. This study was motivated to produce Bio-oil, through the conversion of plant biomass or the use of its industrial and agricultural waste, presenting an alternative proposal for thermochemical pyrolysis process, taking advantage of particle dynamics in the rotating bed that favors the right gas-solid contact and heat transfer and mass. The pyrolyser designed to operate in a continuous process, a feeder containing two stages, a divisive system of biomass integrated with a tab of coal fines and a system of condensing steam pyrolytic. The prototype has been tested with sawdust, using a complete experimental design on two levels to investigate the sensitivity of factors: the process temperature, gas flow drag and spin speed compared to the mass yield of bio-oil. The best result was obtained in the condition of 570 oC, 25 Hz and 200 cm3/min, temperature being the parameter of greatest significance. The mass balance of the elementary stages presented in the order of 20% and 37% liquid pyrolytic carbon. We determined the properties of liquid and solid products of pyrolysis as density, viscosity, pH, PCI, and the composition characterized by chemical analysis, revealing the composition and properties of a Bio-oil.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A sociedade moderna encontra-se cada vez mais dependente dos combustíveis líquidos bem como de produtos derivados do petróleo. Em virtude do limitado tempo de vida das reservas naturais de petróleo, torna-se imperativo encontrar fontes alternativas de produção de hidrocarbonetos. A pirólise de resíduos de pneus e plásticos pode ser uma dessas possíveis fontes. Neste processo, o tratamento termoquímico implementado aos resíduos permite, não só, a valorização económica resultante da sua transformação em produtos de valor acrescido, como também a recuperação do conteúdo orgânico. O referido processo conduz à formação de hidrocarbonetos em fase líquida que podem ser utilizados pela indústria como combustíveis líquidos e/ou como matéria-prima. O presente trabalho tem como objectivo principal a definição das condições experimentais mais propícias à obtenção de combustíveis líquidos (maximização) resultantes da pirólise de misturas de resíduos de borracha de pneus e plásticos nomeadamente polietileno (PE), polipropileno (PP) e poliestireno (PS). Como instrumento de optimização das condições experimentais optou-se pela Metodologia dos Planos Factoriais de Ensaios. Os resultados experimentais obtidos mostram que as taxas de conversão em fase líquida podem atingir valores superiores a 80% (m/m) dependendo das condições experimentais utilizadas bem como do tipo e mistura de resíduos a pirolisar. Os rendimentos das fracções gasosa e sólida podem atingir valores na ordem dos 5% e 12% (respectivamente). Foi também estudado o efeito das condições experimentais nomeadamente a temperatura de reacção, pressão inicial, tempo de reacção e composição da mistura. Este estudo revelou que a maximização da fracção líquida é favorecida por uma temperatura de ensaio de 370ºC, uma pressão inicial de 0,48MPa e um tempo de ensaio de 15 minutos. Relativamente à composição da mistura, os melhores resultados foram obtidos com 30% (m/m) de resíduos de borracha de pneus (BP) associados a uma mistura de 70% (m/m) de resíduos de plásticos composta por 20% polietileno, 30% polipropileno e 20% poliestireno. Igualmente foi feita a caracterização física e química da matéria-prima e dos produtos obtidos pelo referido processo, bem como, o estudo da presença de diferentes substâncias potencialmente doadores de hidrogénio ao meio reaccional de forma a melhorar o rendimento líquido. Por último, foram realizados estudos cinéticos das reacções químicas de formação dos diferentes produtos aos resíduos de borracha de pneus (BP), misturas de resíduos de plástico (PE, PP e PS) e suas misturas. Ainda, foram ajustados os resultados obtidos pelo modelo teórico aos resultados experimentais, propostos mecanismos reaccionais de formação dos produtos e calculados os parâmetros cinéticos. De acordo com os resultados obtidos, a pirólise pode representar um papel significativo na valorização energética e orgânica destes resíduos apesar de, ainda, ser necessário o desenvolvimento de alguns aspectos tecnológicos de modo a tornar mais atraente a implementação desta tecnologia à escala industrial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Química - Ramo Optimização Energética na Indústria Química

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho buscou avaliar o processo de co-pirólise de resíduos de polipropileno com gasóleo, variando a temperatura e a quantidade de polipropileno no meio reacional. A co-pirólise é uma rota promissora, uma vez que minimiza o impacto ambiental causado pela disposição do plástico de maneira inadequada, evita seu acúmulo em lixões e permite um melhor aproveitamento de um recurso natural não-renovável, o petróleo, matéria-prima importante para a geração de energia e obtenção de produtos químicos. As amostras de polipropileno e gasóleo foram submetidas à co-pirólise térmica em atmosfera inerte, em sistema de leito fixo, sob fluxo constante de nitrogênio, variando a temperatura de 400C a 500C e a quantidade de PP no meio reacional de 0,1 a 1,0 g. A influência do gasóleo no meio foi avaliada pelos testes na ausência de PP. Os líquidos pirolíticos obtidos foram caracterizados por cromatografia gasosa modificada, com o objetivo de avaliar a geração de frações na faixa da destilação do diesel. De uma maneira geral, pôde-se observar que o aumento da quantidade de PP no meio reacional favorece a redução do rendimento de líquido pirolítico e o aumento da quantidade de sólido gerado, efeito inverso ao do aumento da temperatura. Com relação ao rendimento geral de produtos na faixa de destilação do diesel na co-pirólise, a adição de PP ao meio não interfere muito no resultado. Já o aumento de temperatura favorece o aumento do rendimento de produtos nessa faixa de destilação. Os resultados obtidos comprovam o potencial da co-pirólise como método de reciclagem química de artefatos de polipropileno pós-consumo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O descarte irregular do óleo vegetal pós-consumo diretamente na rede de esgoto vem causando grandes problemas para o meio ambiente. Atualmente, essa problemática tem se intensificado devido ao aumento de produção e consumo destes óleos, o que por conseqüência aumenta o despejo desordenado. No presente estudo foi realizada a obtenção do bio-óleo a partir da pirólise térmica em atmosfera de nitrogênio, a 400C, por 20 minutos, do óleo vegetal pós-consumo, provenientes das seguintes oleoginosas: soja, milho, girassol e canola. As pirólises não-catalíticas apresentaram uma geração média entre 40 e 50% de um bio-óleo, de elevado índice de acidez, 81,8 mg NaOH/g. Na pirólise catalítica, a argila ácida K10 foi o catalisador que apresentou melhor eficácia para geração de um bio-óleo de menor índice de acidez. A concentração ótima do catalisador foi de 5%(m/m), gerando 482 % de um bio-óleo com índice de acidez de 43,8 mg NaOH/g. A caracterização dos líquidos pirolíticos obtidos foi realizada através da técnica de espectrofotometria na região do infravermelho (FTIR) e cromatografia em fase gasosa acoplada a espectrômetro de massas (CG/EM) que monstraram que a trioleína, o triglicerídeo do ácido oléico, foi craqueado, gerando o hexadecanoato de octadecila e o oleato de eicosila, ésteres do respectivo ácido graxo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pirólise rápida é um processo para conversão térmica de uma biomassa sólida em altos rendimentos de um produto líquido chamado de bio-óleo. Uma das alternativas para geração de um bio-óleo com menor teor de oxigênio é uso de catalisadores nos reatores de pirólise, ao invés de um inerte, num processo chamado de pirólise catalítica. O objetivo deste trabalho foi testar catalisadores comerciais, um ácido e outro básico, em uma unidade piloto de leito fluidizado circulante. O catalisador ácido utilizado foi o Ecat, proveniente de uma unidade industrial de craqueamento catalítico fluido (FCC), e como catalisador básico foi utilizado uma hidrotalcita. Os resultados foram comparados com testes utilizando um material inerte, no caso uma sílica. Uma unidade piloto de FCC do CENPES foi adaptada para realizar os testes de pirólise catalítica. Após fase de modificação e testes de condicionamento, foi comprovada a viabilidade na utilização da unidade piloto adaptada. Contudo, devido a limitações operacionais, maiores tempos de residência tiveram que ser aplicados no reator, configurando o processo como pirólise intermediária. Foram então realizados testes com os três materiais nas temperaturas de 450C e 550C. Os resultados mostraram que o aumento do tempo de residência dos vapores de pirólise teve um impacto significativo nos rendimentos dos produtos quando comparada com o perfil encontrado na literatura para pirólise rápida, pois devido ao incremento das reações secundárias, produziu maiores rendimentos de coque e água, e menores rendimentos de bio-óleo. O Ecat e a hidrotalcita se apresentaram mais efetivos em termos de desoxigenação. O primeiro apresentou maiores taxas de desoxigenação via desidratação e a hidrotalcita apresentou maior capacidade para descarboxilação. Contudo, o uso de Ecat e hidrotalcita não se mostrou adequado para uso em reatores de pirólise intermediária, pois acentuou ainda mais as reações secundárias, gerando um produto com alto teor de água e baixo teor de compostos orgânicos no bio-óleo, além de produzirem mais coque. À temperatura de 450C estes efeitos foram mais pronunciados. Em termos de caracterização química, a condição de pirólise intermediária apontou para a produção de bio-óleos com perfil fenólico, sendo a sílica o que proporcionou os melhores rendimentos, principalmente a temperatura de 550C, sendo superiores aos encontrados na literatura. Analisando as composições dos bio-óleos sob a ótica da produção de biocombustíveis, nenhum dos materiais testados apresentou rendimentos consideráveis em hidrocarbonetos. De maneira geral, a sílica foi o que proporcionou os melhores resultados em termos de rendimento e qualidade do bio-óleo. Sua menor área superficial e sua característica de inerte se mostraram mais adequados para o processo de pirólise intermediária, onde a contribuição das reações secundárias em fase gasosa é elevada em função do tempo de residência no reator

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A co-pirólise é uma rota promissora, uma vez que minimiza o impacto ambiental causado pela disposição do plástico de maneira inadequada, evita seu acúmulo em lixões e permite um melhor aproveitamento de um recurso natural não-renovável, o petróleo, matéria prima importante para a geração de energia e obtenção de produtos químicos. O presente trabalho teve como objetivo a definição das condições experimentais mais propícias à obtenção de líquidos pirolíticos com alta fração de óleo diesel, resultantes da co-pirólise de polietileno de alta densidade (PEAD) pós-consumo com gasóleo pesado tilizando-se catalisador de FCC (Fluid Catalytic Cracking). Como instrumento de otimização das condições experimentais, optou-se pela Metodologia Planejamento Fatorial. Foi também estudado o efeito das condições experimentais, como: a temperatura de reação, a relação gasóleo/polietileno e a quantidade de catalisador no meio reacional. As amostras de polietileno, gasóleo e catalisador foram submetidas à co-pirólise em sistema de leito fixo, sob fluxo constante de nitrogênio, variando-se a temperatura entre 450 C a 550 C, a quantidade de PEAD no meio reacional foi de 0,2 a 0,6 g, e a quantidade de catalisador foi de zero a 0,06 g, mantendo-se fixa a quantidade de gasóleo em 2 g. Foram efetuadas as caracterizações física e química do gasóleo, polietileno pós-uso e do catalisador. Como resultado, obteve-se a produção de 87% de fração de óleo diesel em duas condições diferentes: (a) 550 0C de temperatura sem catalisador; (b) 500 0C de temperatura e 25% de catalisador FCC. Em ambos os casos, a quantidade de gasóleo pesado e PEAD foram constantes (2 g Gasóleo; 0,2 g PEAD), assim com o tempo de reação de 15 minutos. A fração de óleo diesel obtida neste estudo alcançou o poder calorífico de 44,0 MJ/Kg que é similar ao óleo diesel comercial. É importante ressaltar que em ambos os casos nenhum resíduo foi produzido, sendo uma rota ambientalmente importante para reciclagem de embalagens plásticas contaminadas com óleo lubrificante originárias de postos de serviço, visando à recuperação de ambos conteúdo energético e orgânico dos resíduos de embalagens plásticas pós-uso