966 resultados para Pile bridges
Resumo:
Plates partially hand colored.
Resumo:
Scour around bridge foundations is one of the leading causes of bridge failure. Up until recently, the monitoring of this phenomenon was primarily based around using underwater instrumentation to monitor the progression of scour holes as they develop around foundation systems. Vibration-based damage detection techniques have been used to detect damage in bridge beams. The application of these vibration based methods to the detection of scour has come to the fore in research in recent years. This paper examines the effect that scour has on the frequency response of a driven pile foundation system, similar to those used to support road and rail bridges. The effect of scour on the vibration characteristics of the pile is examined using laboratory and field testing. It is clear that there is a very clear reduction in the natural frequency of the pile as the severity of scour increases. It is shown that by combining state-of-the-art geotechnical techniques with relatively simple finite element modelling approaches, it is possible to accurately predict the natural frequency of the pile for a given scour depth. Therefore, the paper proposes a method that would allow the estimation of scour depth for a given observed pile frequency.
Resumo:
This research includes parametric studies performed with the use of three-dimensional nonlinear finite element models in order to investigate the effects of cantilever wingwall configurations on the behavior of integral abutment bridges located on straight alignment and zero skew. The parametric studies include all three types of cantilever wingwalls; inline, flared, and U-shaped wingwalls. Bridges analyzed vary in length from 100 to 1200 feet. Soil-structure and soil-pile interaction are included in the analysis. Loadings include dead load in combination with temperature loads in both rising and falling temperatures. Plasticity in the integral abutment piles is investigated by means of nonlinear plasticity models. Cracking in the abutments and stresses in the reinforcing steel are investigated by means of nonlinear concrete models. The effects of wingwall configurations are assessed in terms of stresses in the integral abutment piles, cracking in the abutment walls, stresses in the reinforcing steel of abutment walls, and axial forces induced in the steel girders. The models developed are analyzed for three types of soil behind the abutments and wingwalls; dense sand, medium dense sand, and loose sand. In addition, the models consider both the case of presence and absence of predrilled holes at the top nine feet of piles. The soil around the piles below the predrilled holes consists of very stiff clay. The results indicate that for the stresses in the piles, the critical load is temperature contraction and the most critical parameter is the use of predrilled holes. However, for both the stresses in the reinforcing steel and the axial forces induced in the girders, the critical load is temperature expansion and the critical parameter is the bridge length. In addition, the results indicate that the use of cantilever wingwalls in integral abutment bridges results in an increase in the magnitude of axial forces in the steel girders during temperature expansion and generation of pile plasticity at shorter bridge lengths compared to bridges built without cantilever wingwalls.
Resumo:
Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.
Resumo:
Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.
Resumo:
Designing and estimating civil concrete structures is a complex process which to many practitioners is tied to manual or semi-manual processes of 2D design and cannot be further improved by automated, interacting design-estimating processes. This paper presents a feasibility study for the development an automated estimator for concrete bridge design. The study offers a value proposition: an efficient automated model-based estimator can add value to the whole bridge design-estimating process, i.e., reducing estimation errors, shortening the duration of success estimates, and increasing the benefit of doing cost estimation when compared with the current practice. This is then followed by a description of what is in an efficient automated model-based estimator and how it should be used. Finally the process of model-based estimating is compared with the current practice to highlight the values embedded in the automated processes.
Resumo:
The effective management of bridge stock involves making decisions as to when to repair, remedy, or do nothing, taking into account the financial and service life implications. Such decisions require a reliable diagnosis as to the cause of distress and an understanding of the likely future degradation. Such diagnoses are based on a combination of visual inspections, laboratory tests on samples and expert opinions. In addition, the choice of appropriate laboratory tests requires an understanding of the degradation mechanisms involved. Under these circumstances, the use of expert systems or evaluation tools developed from “realtime” case studies provides a promising solution in the absence of expert knowledge. This paper addresses the issues in bridge infrastructure management in Queensland, Australia. Bridges affected by alkali silica reaction and chloride induced corrosion have been investigated and the results presented using a mind mapping tool. The analysis highights that several levels of rules are required to assess the mechanism causing distress. The systematic development of a rule based approach is presented. An example of this application to a case study bridge has been used to demonstrate that preliminary results are satisfactory.
Resumo:
There are about 2500 bridges in Queensland, Australia. Majority of these structures require significant repairs around the halfway mark of their design life with probably 1% or less reaching a 100 year design life. (Carse, 2005). This is due to the fact that bridges constructed in aggressive environments such as the coastal regions experience accelerated deterioration. As a result, maintaining the service delivery of these assets has become one of the important issues for the Queensland Department of Main Roads (QDMR).
Resumo:
One of the key issues facing public asset owners is the decision of refurbishing aged built assets. This decision requires an assessment of the “remaining service life” of the key components in a building. The remaining service life is significantly dependent upon the existing condition of the asset and future degradation patterns considering durability and functional obsolescence. Recently developed methods on Residual Service Life modelling, require sophisticated data that are not readily available. Most of the data available are in the form of reports prior to undertaking major repairs or in the form of sessional audit reports. Valuable information from these available sources can serve as bench marks for estimating the reference service life. The authors have acquired similar informations from a public asset building in Melbourne. Using these informations, the residual service life of a case study building façade has been estimated in this paper based on state-of-the-art approaches. These estimations have been evaluated against expert opinion. Though the results are encouraging it is clear that the state-of-the-art methodologies can only provide meaningful estimates provided the level and quality of data are available. This investigation resulted in the development of a new framework for maintenance that integrates the condition assessment procedures and factors influencing residual service life
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.
Resumo:
Generative media systems present an opportunity for users to leverage computational systems to make sense of complex media forms through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. These kinds of systems present a range of affordances that can facilitate new kinds of relationships with music and media performance and production. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences to users with little formal musical or artistic expertise. This paper examines the relational affordances of these systems evidenced by selected field data drawn from the Network Jamming Project. These generative performance systems enable access to unique ensemble with very little musical knowledge or skill and they further offer the possibility of unique interactive relationships with artists and musical knowledge through collaborative performance. In this presentation I will focus on demonstrating how these simulated experiences might lead to understandings that may be of educational and social benefit. Conference participants will be invited to jam in real time using virtual interfaces and to view video artifacts that demonstrate an interactive relationship with artists.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
Bridges are an important part of society's infrastructure and reliable methods are necessary to monitor them and ensure their safety and efficiency. Bridges deteriorate with age and early detection of damage helps in prolonging the lives and prevent catastrophic failures. Most bridges still in used today were built decades ago and are now subjected to changes in load patterns, which can cause localized distress and if not corrected can result in bridge failure. In the past, monitoring of structures was usually done by means of visual inspection and tapping of the structures using a small hammer. Recent advancements of sensors and information technologies have resulted in new ways of monitoring the performance of structures. This paper briefly describes the current technologies used in bridge structures condition monitoring with its prime focus in the application of acoustic emission (AE) technology in the monitoring of bridge structures and its challenges.
Resumo:
The case study of Lusoponte illustrates the concession awarded by the Portuguese Government to finance, design, build and operate two bridges over the Tagus in Lisbon, Portugal. It includes an overview of the project's background and an analysis of the main risk categories stating both the actual risks encountered and the mitigation measures adopted. Throughout the project a great attention was given to whole life cycle costs, and gains in efficiency and cost control. Among the lessons that can be learned from both the public and private sector is that a complete risk management analysis must include not only the technical factors but also a realistic assessment of environmental and social risks. These were the risks that were somewhat overseen and that caused the main problems to the project's development.