203 resultados para Pigeon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous experiments suggesting that previewing visual landscapes speeds homing from familiar release sites, restricted access to olfactory cues may have artefactually encouraged homing pigeons, Calumba livia, to resort to visual landmark orientation. Since evidence for the role of visual landmarks in wide-ranging avian orientation is still equivocal, Braithwaite & Guilford's (1991, Proc. R. Sec. Lond. Ser. B, 245, 183-186) 'previewing' experiments were replicated: birds were allowed or denied visual access to a familiar site prior to release, but allowed ample access to olfactory cues. In experiment 1, allowing birds to preview familiar sites for 5 min prior to release enhanced homing speeds by about 12%. In experiment 2, modified to reduce between-day effects on variation, previewing enhanced homing speeds by about 16%. These experiments support the conclusion that visual landmarks remote from sight of the loft are an important component of the familiar area map, although the nature of the landmarks and how they are encoded remain to be determined. (C) 1997 The Association for the Study of Animal Behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’évaluation de la douleur chez les oiseaux est difficile, puisque la plupart se comportent comme des proies et ont tendance à masquer tout signe extérieur de douleur. Les doses et les drogues utilisées pour traiter la douleur des oiseaux sont la plupart du temps basées sur une extrapolation d’autres espèces, ainsi que sur l’expérience clinique. Peu d’études de pharmacocinétique, d’efficacité et de toxicité sont disponibles dans la littérature. La plupart des études rapportées utilisent des stimuli nociceptifs éloignés des douleurs cliniques, comme les stimuli électriques ou thermiques, qui sont difficilement extrapolables à des situations rencontrées en pratique. L’objectif de notre projet était d’évaluer les effets analgésiques de deux doses de meloxicam chez le pigeon à l’aide d‘un modèle de fracture du fémur. La douleur post-opératoire a été évaluée pendant les quatre premiers jours suivant la chirurgie par trois méthodes : le suivi du poids porté sur la patte opérée comparativement à l’autre patte, quatre différentes échelles descriptives de douleur et la réalisation d’éthogrammes à l’aide d’enregistrements vidéo. L’administration de 0,5 mg/kg PO q12h de meloxicam n’a pas permis de réduire significativement les indicateurs de douleur mesurés comparativement à un groupe témoin recevant de la saline. Les pigeons ayant reçu 2 mg/kg PO q12h de meloxicam ont montré une réduction significative des indicateurs de douleur mesurés par les différentes méthodes. Nos résultats suggèrent que l’administration de 2 mg/kg PO q12h aux pigeons suite à une chirurgie orthopédique procure une analgésie supérieure aux doses actuellement recommandées dans la littérature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endemic pink pigeon has recovered from less than 20 birds in the mid-1970s to 355 free-living individuals in 2003. A major concern for the species' recovery has been the potential genetic problem of inbreeding. Captive pink pigeons bred for reintroduction were managed to maximise founder representation and minimise inbreeding. In this paper, we quantify the effect of inbreeding on survival and reproductive parameters in captive and wild populations and quantify DNA sequence variation in the mitochondrial d-loop region for pink pigeon founders. Inbreeding affected egg fertility, squab, juvenile and adult survival, but effects were strongest in highly inbred birds (F≥0.25). Inbreeding depression was more apparent in free-living birds where even moderate levels of inbreeding affected survival, although highly inbred birds were equally compromised in both captive and wild populations. Mitochondrial DNA haplotypic diversity in pink pigeon founders is low, suggesting that background inbreeding is contributing to low fertility and depressed productivity in this species, as well as comparable survival of some groups of non-inbred and nominally inbred birds. Management of wild populations has boosted population growth and may be required long-term to offset the negative effects of inbreeding depression and enhance the species' survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollinators face many challenges within agricultural systems due to landscape changes and intensification which can affect resource availability that can impact pollination services. This paper examines pigeon pea pollination and considers how landscape context and agricultural intensification in terms of pesticide use affects the abundance of bees characterized by species guilds on crops. The study was conducted on six paired farms across a gradient of habitat complexity based on the distance of each farm from adjacent semi-natural vegetation in Kibwezi Sub-county, Kenya. The study found that farms which do not use insecticides in farm management, but are in close proximity to natural habitat have greater bee guild abundance, but at further distances, overall abundance is reduced with or without insecticide use. At 1 km landscape radius, the complexity of habitats but not patch size had a positive impact on the abundance of cavity nesting bees and mason bees, which can be attributed to the interspersion of the small-holder farms with semi-natural habitats across the landscapes producing mosaics of heterogeneous habitats. The study revealed the strongest relationships between fruit set and bee abundance to be with the carpenter bee, social bee and solitary bee guilds, which are among the most abundant bees visiting pigeon pea flowers in this system. Our findings provide the foundation for conservation efforts by identifying which bee guilds pollinated pigeon peas. From this study, we suggest managing the floral and nesting resources that would best support the most abundant crop pollinators, and also reducing insecticide application to the crop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most studied comparison of aging and maximum lifespan potential (MLSP) among endotherms involves the 7-fold longevity difference between rats (MLSP 5y) and pigeons (MLSP 35y). A widely accepted theory explaining MLSP differences between species is the oxidative stress theory, which purports that reactive oxygen species (ROS) produced during mitochondrial respiration damage bio-molecules and eventually lead to the breakdown of regulatory systems and consequent death. Previous rat-pigeon studies compared only aspects of the oxidative stress theory and most concluded that the lower mitochondrial superoxide production of pigeons compared to rats was responsible for their much greater longevity. This conclusion is based mainly on data from one tissue (the heart) using one mitochondrial substrate (succinate). Studies on heart mitochondria using pyruvate as a mitochondrial substrate gave contradictory results. We believe the conclusion that birds produce less mitochondrial superoxide than mammals is unwarranted. We have revisited the rat-pigeon comparison in the most comprehensive manner to date. We have measured superoxide production (by heart, skeletal muscle and liver mitochondria), five different antioxidants in plasma, three tissues and mitochondria, membrane fatty acid composition (in seven tissues and three mitochondria), and biomarkers of oxidative damage. The only substantial and consistent difference that we have observed between rats and pigeons is their membrane fatty acid composition, with rats having membranes that are more susceptible to damage. This suggests that, although there was no difference in superoxide production, there is likely a much greater production of lipid-based ROS in the rat. We conclude that the differences in superoxide production reported previously were due to the arbitrary selection of heart muscle to source mitochondria and the provision of succinate. Had mitochondria been harvested from other tissues or other relevant mitochondrial metabolic substrates been used, then very different conclusions regarding differences in oxidative stress would have been reached. ©

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Both male and female pigeons have the ability to produce a nutrient solution in their crop for the nourishment of their young. The production of the nutrient solution has been likened to lactation in mammals, and hence the product has been called pigeon ‘milk’. It has been shown that pigeon ‘milk’ is essential for growth and development of the pigeon squab, and without it they fail to thrive. Studies have investigated the nutritional value of pigeon ‘milk’ but very little else is known about what it is or how it is produced. This study aimed to gain insight into the process by studying gene expression in the ‘lactating’ crop.
Results: Macroscopic comparison of ‘lactating’ and non-’lactating’ crop reveals that the ‘lactating’ crop is enlarged and thickened with two very obvious lateral lobes that contain discrete rice-shaped pellets of pigeon ‘milk’. This was characterised histologically by an increase in the number and depth of rete pegs extending from the basal layer of the epithelium to the lamina propria, and extensive proliferation and folding of the germinal layer into the superficial epithelium. A global gene expression profile comparison between ‘lactating’ crop and non-’lactating’ crop showed that 542 genes are up-regulated in the ‘lactating’ crop, and 639 genes are down-regulated. Pathway analysis revealed that genes up-regulated in ‘lactating’ crop were involved in the proliferation of melanocytes, extracellular matrix-receptor interaction, the adherens junction and the wingless (wnt) signalling pathway. Gene ontology analysis showed that antioxidant response and microtubule transport were enriched in ‘lactating’ crop.
Conclusions: There is a hyperplastic response in the pigeon crop epithelium during ‘lactation’ that leads to localised cellular stress and expression of antioxidant protein-encoding genes. The differentiated, cornified cells that form the pigeon ‘milk’ are of keratinocyte lineage and contain triglycerides that are likely endocytosed as very low density lipoprotein (VLDL) and repackaged as triglyceride in vesicles that are transported intracellularly by microtubules. This mechanism is an interesting example of the evolution of a system with analogies to mammalian lactation, as pigeon ‘milk’ fulfils a similar function to mammalian milk, but is produced by a different mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pigeon ‘milk’ and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon ‘milk’. Therefore, using a chicken model, we investigated the effect of pigeon ‘milk’ on immune gene expression in the Gut Associated Lymphoid Tissue (GALT) and on the composition of the caecal microbiota. Chickens fed pigeon ‘milk’ had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon ‘milk’-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon ‘milk’-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon ‘milk’, as well as being directly seeded by bacteria present in pigeon ‘milk’. Our results demonstrate that pigeon ‘milk’ has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon ‘lactation’ and mammalian lactation evolved independently but resulted in similarly functional products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND : The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. RESULTS: We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon 'lactating' crop-specific annexin cp35. Beta-keratins play an important role in 'lactating' crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. CONCLUSIONS: This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pigeon milk is fed to young pigeons by both their parents. This thesis described the genetic basis of pigeon milk production in the crop and also its effect on young chickens. This revealed that pigeon milk has functional similarities to mammalian milk, and bioactives with future potential in poultry production were identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efferent ductules of the pigeon are localized in the epididymal region and are topographically divided into proximal and distal, both portions being lined with stereociliated pseudostratified epithelium. Transmission electron microscopy shows five distinct cell types