925 resultados para Piezoelectric elements
Resumo:
The study of the cross-talk and its effects in the performance of a matrix array of piezoelectric elements is an important issue. This corresponds to the study of the cross mode of vibration of each one of the piezoelectric elements that form the ultrasonic array. The aim is to detect and measure the cross-talk that is generated for the cross mode of vibration. In order to accomplish this task, an array of 2x3 elements was designed and developed. This was constructed using 8 MHz piezoelectric ceramics. A number of configurations have been experimented, considering the excitation of an increasing number of elements, in order to detect and measure the propagation of wave interference. Initial results show the way cross-talk interferes the beam generated by the array, this causing attenuation of the main beam and other negative effects.
Resumo:
This paper investigates the input-output characteristics of structural health monitoring systems for composite plates based on permanently attached piezoelectric transmitter and sensor elements. Using dynamic piezoelectricity theory and a multiple integral transform method to describe the propagating and scattered flexural waves an electro-mechanical model for simulating the voltage input-output transfer function for circular piezoelectric transmitters and sensors adhesively attached to an orthotropic composite plate is developed. The method enables the characterization of all three physical processes, i.e. wave generation, wave propagation and wave reception. The influence of transducer, plate and attached electrical circuit characteristics on the voltage output behaviour of the system is examined through numerical calculations, both in frequency and the time domain. The results show that the input-output behaviour of the system is not properly predicted by the transducers' properties alone. Coupling effects between the transducers and the tested structure have to be taken into account, and adding backing materials to the piezoelectric elements can significantly improve the sensitivity of the system. It is shown that in order to achieve maximum sensitivity, particular piezoelectric transmitters and sensors need to be designed according to the structure to be monitored and the specific frequency regime of interest.
Resumo:
本文介绍了采用压电陶瓷管作为驱动器的四自由度微型移动平台的结构设计、运动机理 ,并对系统的动态特性进行了分析和探讨 .最后对纳米微动平台在不同负载、不同材质介面上进行了试验 ,并给出了试验结果 .该平台具有移动范围广、控制简单、步距可调、具有较大负载支撑能力等特点 ,经实验证明 ,本系统所采用的移动机理是可行的
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A finite element modeling of an intelligent truss structure with piezoelectric stack actuators for the purpose of active damping and structural vibration attenuation is presented. This paper concerns with the following issues aspects: the design of intelligent truss structure considering electro-mechanical coupling between the host structure and piezoelectric stack actuators; the H 2 norm approach to search for optimal placement of actuators and sensors; and finally some aspects in robust control techniques. The electro-mechanical behavior of piezoelectric elements is directly related to the successful application of the actuators in truss structures. In order to achieve the desired damping in the interested bandwidth frequency it is used the H ∞ output feedback solved by convex optimization. The constraints to be reached are written by linear matrix inequalities (LMI). The paper concludes with a numerical example, using Matlab and Simulink, in a cantilevered, 2-bay space truss structure. The results demonstrated the approach applicability.
Resumo:
In this work, signal processing techniques are used to improve the quality of image based on multi-element synthetic aperture techniques. Using several apodization functions to obtain different side lobes distribution, a polarity function and a threshold criterium are used to develop an image compounding technique. The spatial diversity is increased using an additional array, which generates complementary information about the defects, improving the results of the proposed algorithm and producing high resolution and contrast images. The inspection of isotropic plate-like structures using linear arrays and Lamb waves is presented. Experimental results are shown for a 1-mm-thick isotropic aluminum plate with artificial defects using linear arrays formed by 30 piezoelectric elements, with the low dispersion symmetric mode S0 at the frequency of 330 kHz. © 2011 American Institute of Physics.
Resumo:
Several Lamb wave modes can be coupled to a particular structure, depending on its geometry and transducer used to generate the guided waves. Each Lamb mode interacts in a particular form with different types of defects, like notches, delamination, surface defects, resulting in different information which can be used to improve damage detection and characterization. An image compounding technique that uses the information obtained from different propagation modes of Lamb waves for non-destructive testing of plate-like structures is proposed. A linear array consisting of 16 piezoelectric elements is attached to a 1 mm thickness aluminum plate, coupling the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two images are obtained from amplitude and phase information: one image using the Total Focusing Method (TFM) and one phase image obtained from the Sign Coherence Factor (SCF). Each TFM image is multiplied by the SCF image of the respective mode to improve contrast and reduce side and grating lobes effects. The high dispersive characteristic of the A0 mode is compensated for adequate defect detection. The information in the SCF images is used to select one of the TFM mode images, at each pixel, to obtain the compounded image. As a result, dead zone is reduced, resolution and contrast are improved, enhancing damage detection when compared to the use of only one mode. © 2013 Elsevier Ltd.
Resumo:
Several Lamb wave modes can be coupled to a particular structure, depending on its geometry and transducer used to generate the guided waves. Each Lamb mode interacts in a particular form with different types of defects, like notches, delamination, surface defects, resulting in different information which can be used to improve damage detection and characterization. An image compounding technique that uses the information obtained from different propagation modes of Lamb waves for non-destructive testing of plate-like structures is proposed. A linear array consisting of 16 piezoelectric elements is attached to a 1 mm thickness aluminum plate, coupling the fundamental A0 and SO modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two images are obtained from amplitude and phase information: one image using the Total Focusing Method (TFM) and one phase image obtained from the Sign Coherence Factor (SCF). Each TFM image is multiplied by the SCF image of the respective mode to improve contrast and reduce side and grating lobes effects. The high dispersive characteristic of the A0 mode is compensated for adequate defect detection. The information in the SCF images is used to select one of the TFM mode images, at each pixel, to obtain the compounded image. As a result, dead zone is reduced, resolution and contrast are improved, enhancing damage detection when compared to the use of only one mode. (C) 2013 Elsevier Ltd. All rights reserved. (AU)
Resumo:
El presente trabajo de tesis investiga el efecto del fenómeno conocido como “Cross-talk” generado por el modo lateral de vibración, en la respuesta de un transductor ultrasónico formado por un arreglo de elementos piezoeléctricos tipo PZT (Zircanato Titanato de Plomo), la investigación se lleva a cabo desde el punto de vista de la naturaleza física de este efecto, así como de los parámetros asociados al mismo, así como un análisis del efecto del “Cross-talk” en la respuesta del transductor, formado por arreglos de elementos piezoeléctricos. Diversas investigaciones han abordado el fenómeno del “Cross-talk” y de sus efectos en la respuesta de los transductores, estos se han enfocado principalmente al modo espesor (thickness) de vibración. Sin embargo no ha habido un estudio a fondo para el estudio de este fenómeno en el modo lateral de vibración tema de interés de este trabajo de tesis. Este trabajo incluye simulaciones del fenómeno del “Cross-talk” mediante el método de los elementos finitos (MEF), así como la construcción de un transductor tipo matricial (arrray) de 2x3 elementos, en el que fueron realizadas las mediciones físicas del fenómeno. El trabajo abarca un estudio comparativo entre las simulaciones y las mediciones realizadas en el transductor, considerando que las cerámicas del transductor están montadas sobre diferentes materiales (backing) en donde la propagación de la energía emitida por las cerámicas piezoeléctricas provoca un mayor o menor grado de “Cross-talk” dependiendo de la velocidad en que se propaga dicha energía. Esta investigación también llevó a cabo el estudio del efecto del “Cross-talk” en el patrón de radiación que emite el arreglo de elementos piezoeléctricos, siendo este patrón de radiación un factor importante en la respuesta del transductor, motivo por el cual se realizó un análisis de cómo se ve afectado este patrón bajo la influencia del fenómeno del “Cross-talk”. Como ya se mencionó debido a la falta de un estudio a profundidad del fenómeno del “Cross-talk” en el modo lateral, la contribución del presente trabajo es importante ya que se enfoca al modo lateral de vibración de los elementos piezoeléctricos del arreglo. En particular se desarrollo una ecuación que permite cuantificar el fenómeno del “Cross-talk” y visualizar sus efectos en el arreglo. Derivando de este estudio se concluye que el fenómeno del “Cross-talk” generado por el modo lateral de vibración tiene un efecto significativo en la respuesta de los diferentes transductores matriciales considerados. ABSTRACT This thesis investigates the effect of the phenomenon known as crosstalk from the point of view of its physical nature and the elements that lead to the formation of this phenomenon to an analysis of how it may affect the performance of the ultrasonic transducer. This phenomenon occurs primarily in matrix arrays and this phenomenon is magnified by certain factors causing serious problems in the performance of a transducer. Researchers have addressed the phenomenon of crosstalk and their effects on the response of these transducers. They have mainly focused in the thickness vibration mode, and there has been no comprehensive study of this phenomenon in the lateral vibration mode, issue of interest of this thesis. This work includes simulations of the crosstalk phenomenon using the finite element method (FEM), and the construction of a matrix type transducer (array) of 2x3 elements, in which physical measurements were made. The work includes a comparative study between simulations and measurements in the transducer, whereas the ceramic transducer are mounted on different materials (backing) where the spread of the energy emitted by the piezoelectric ceramic causes a greater or lesser degree of crosstalk depending on the speed at which this energy spreads. This research also carried out the study of the effect of the crosstalk in the radiation pattern emitted by the piezoelectric array. The radiation pattern is an important factor in the response of the transducer that is why we conducted an analysis of how this pattern is affected under the influence of the crosstalk phenomenon. As mentioned before because of the lack of an in-depth study of the crosstalk phenomenon in the lateral vibration mode, the contribution of this work is important because it focuses in this vibration mode of the piezoelectric elements in the array. In particular, an equation was developed to quantify the crosstalk phenomenon and to see its effects in the array. Deriving from this study it is possible to conclude that the crosstalk phenomenon generated by the lateral vibration mode has a significant effect on the response of the different matrix transducers considered in this work.
Resumo:
Structural Health Monitoring (SHM) systems were developed to evaluate the integrity of a system during operation, and to quickly identify the maintenance problems. They will be used in future aerospace vehicles to improve safety, reduce cost and minimize the maintenance time of a system. Many SHM systems were already developed to evaluate the integrity of plates and used in marine structures. Their implementation in manufacturing processes is still expected. The application of SHM methods for complex geometries and welds are two important challenges in this area of research. This research work started by studying the characteristics of piezoelectric actuators, and a small energy harvester was designed. The output voltages at different frequencies of vibration were acquired to determine the nonlinear characteristics of the piezoelectric stripe actuators. The frequency response was evaluated experimentally. AA battery size energy harvesting devices were developed by using these actuators. When the round and square cross section devices were excited at 50 Hz frequency, they generated 16 V and 25 V respectively. The Surface Response to Excitation (SuRE) and Lamb wave methods were used to estimate the condition of parts with complex geometries. Cutting tools and welded plates were considered. Both approaches used piezoelectric elements that were attached to the surfaces of considered parts. The variation of the magnitude of the frequency response was evaluated when the SuRE method was used. The sum of the square of the differences was calculated. The envelope of the received signal was used for the analysis of wave propagation. Bi-orthogonal wavelet (Binlet) analysis was also used for the evaluation of the data obtained during Lamb wave technique. Both the Lamb wave and SuRE approaches along with the three methods for data analysis worked effectively to detect increasing tool wear. Similarly, they detected defects on the plate, on the weld, and on a separate plate without any sensor as long as it was welded to the test plate.
Resumo:
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
Resumo:
During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.
Resumo:
Tunable photonic elements at the surface of an optical fiber with piezoelectric core are proposed and analyzed theoretically. These elements are based on whispering gallery modes whose propagation along the fiber is fully controlled by nanoscale variation of the effective fiber radius, which can be tuned by means of a piezoelectric actuator embedded into the core. The developed theory allows one to express the introduced effective radius variation through the shape of the actuator and the voltage applied to it. In particular, the designs of a miniature tunable optical delay line and a miniature tunable dispersion compensator are presented. The potential application of the suggested model to the design of a miniature optical buffer is also discussed.
Resumo:
A set of finite elements (FEs) is formulated to analyze wave propagation through inhomogeneous material when subjected to mechanical, thermal loading or piezo-electric actuation. Elastic, thermal and electrical properties of the materials axe allowed to vary in length and thickness direction. The elements can act both as sensors and actuators. These elements are used to model wave propagation in functionally graded materials (FGM) and the effect of inhomogeneity in the wave is demonstrated. Further, a surface acoustic wave (SAW) device is modeled and wave propagation due to piezo-electric actuation from interdigital transducers (IDTs) is studied.