13 resultados para Picornaviridae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Parechoviruses (HPEV) belong to the family Picornaviridae of positive-stranded RNA viruses. Although the parechovirus genome shares the general properties of other picornaviruses, the genus has several unique features when compared to other family members. We found that HPEV1 attaches to αv integrins on the cell surface and is internalized through the clathrin-mediated endocytic pathway. During he course of the infection, the Golgi was found to disintegrate and the ER membranes to swell and loose their ribosomes. The replication of HPEV1 was found to take place on small clusters of vesicles which contained the trans-Golgi marker GalT as well as the viral non-structural 2C protein. 2C was additionally found on stretches of modified ER-membranes, seemingly not involved in RNA replication. The viral non-structural 2A and 2C proteins were studied in further detail and were found to display several interesting features. The 2A protein was found to be a RNA-binding protein that preferably binds to positive sense 3 UTR RNA. It was found to bind also duplex RNA containing 3 UTR(+)-3 UTR(-), but not other dsRNA molecules studied. Mutagenesis revealed that the N-terminal basic-rich region as well as the C-terminus, are important for RNA-binding. The 2C protein on the other hand, was found to have both ATP-diphosphohydrolase and AMP kinase activities. Neither dATP nor other NTP:s were suitable substrates. Furthermore, we found that as a result of theses activities the protein is autophosphorylated. The intracellular changes brought about by the individual HPEV1 non-structural proteins were studied through the expression of fusion proteins. None of the proteins expressed were able to induce membrane changes similar to those seen during HPEV1 infection. However, the 2C protein, which could be found on the surface of lipid droplets but also on diverse intracellular membranes, was partly relocated to viral replication complexes in transfected, superinfected cells. Although Golgi to ER traffic was arrested in HPEV1-infected cells, none of the individually expressed non-structural proteins had any visible effect on the anterograde membrane traffic. Our results suggest that the HPEV1 replication strategy is different from that of many other picornaviruses. Furthermore, this study shows how relatively small differences in genome sequence result in very different intracellular pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Dicistroviridae is a new family of small, non-enveloped, +ssRNA viruses pathogenic to both beneficial arthropods and insect pests. Little is known about the dicistrovirus replication mechanism or gene function, and any knowledge on these subjects comes mainly from comparisons with mammalian viruses from the Picornaviridae family. Due to its peculiar genome organization and characteristics of the per os viral transmission route, dicistroviruses make good candidates for use as biopesticides. Triatoma virus (TrV) is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of the human trypanosomiasis disease called Chagas disease. TrV was postulated as a potential control agent against Chagas' vectors. Although there is no evidence that TrV nor other dicistroviruses replicate in species outside the Insecta class, the innocuousness of these viruses in humans and animals needs to be ascertained. Methods: In this study, RT-PCR and ELISA were used to detect the infectivity of this virus in Mus musculus BALB/c mice. Results: In this study we have observed that there is no significant difference in the ratio IgG2a/IgG1 in sera from animals inoculated with TrV when compared with non-inoculated animals or mice inoculated only with non-infective TrV protein capsids. Conclusions: We conclude that, under our experimental conditions, TrV is unable to replicate inmice. This study constitutes the first test to evaluate the infectivity of a dicistrovirus in a vertebrate animal model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells, there is a loss of tethering of microtubules to the microtubule organizing center (MTOC) region. Loss of labeling for -tubulin, but not pericentrin, from the MTOC suggests a targeting of -tubulin (or associated proteins) rather than a total breakdown in MTOC structure. The identity of the FMDV protein(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells. We report that the only viral nonstructural protein able to reproduce the loss of -tubulin from the MTOC and the loss of integrity of the microtubule system is FMDV 3Cpro. In contrast, infection of cells with another picornavirus, bovine enterovirus, did not affect -tubulin distribution, and the microtubule network remained relatively unaffected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was initiated when several massive outbreaks of Chikungunya, Dengue and Japanese Encephalitis were frequently reported across the State of Kerala. Multiple symptoms persisted among the affected individuals and the public health officials were in search of aetiological agents responsible for the out breaks and, other than clinical samples no resources were available. In this context, a study was undertaken to focus on mosquito larvae to investigate the viruses borne by them which remain silently prevalent in the environment. The study was not a group specific investigation limited to either arbovirus or enterovirus, but had a broad spectrum approach. The study encompassed the viral pathogens that could be isolated, their impact when passaged through cell lines, growth kinetics, titer of the working stocks in specific cell line, the structure by means of transmission electron microscopy(TEM), the one step growth and molecular characterization using molecular tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Echovirus type 12 (EV12), an enterovirus of the Picornaviridae family, uses the complement regulator, decay-accelerating factor (DAF, CD55) as a cellular receptor. We have calculated a three-dimensional reconstruction of EV12 bound to a fragment of DAF, consisting of short consensus repeat domains 3 and 4, from cryo-negative stain electron microscopy data (EMD #1057). This shows that, as for an earlier reconstruction of the related echovirus type 7 bound to DAF, attachment is not within the viral canyon but occurs close to the two-fold symmetry axes. Despite this general similarity, our reconstruction reveals a receptor interaction that is quite different from that observed for EV7. Fitting of the crystallographic co-ordinates for DAF34 and EV11 into the reconstruction shows a close agreement between the crystal structure of the receptor fragment and the density for the virus-bound receptor, allowing unambiguous positioning of the receptor with respect to the virion (PDB #1UPN). Our finding that the mode of virus-receptor interaction in EV12 is distinct from that seen for EV7 raises interesting questions regarding the evolution and biological significance of the DAF-binding phenotype in these viruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O vírus Juruaçá (AN 401933) foi isolado a partir de um lote de vísceras de um morcego capturado na região de Porto Trombetas, município de Oriximiná, Estado do Pará, em 1982, sendo considerado um vírus não grupado/ não classificado. O objetivo deste trabalho foi classificar o vírus Juruaçá em um táxon viral, baseando-se nas suas propriedades morfológicas, físico-químicas, antigênicas e moleculares, bem como descrever as alterações anatomo-patológicas associadas à infecção experimental. Camundongos recém-nascidos mostraram suscetibilidade à infecção pelo vírus Juruaçá por inoculação i.c., iniciando os sintomas com quatro dias p.i. e culminando com morte dos animais oito dias p.i.. O vírus não é sensível à ação do DCA e consegue aglutinar hemácias de ganso em pH 5,75. Pelos testes de IH e FC, o vírus não se relaciona com nenhum arbovírus ou outros vírus de vertebrados conhecidos testados, reagindo apenas com o seu soro homólogo. O vírus não causa ECP em linhagens de células Vero e C6/36, e IFI destas células também foi negativa. Entretanto, o vírus Juruaçá replica em cultivo primário de células do SNC de camundongo (astrócitos e microglias), confirmada por IFI com dupla marcação. Cultivos de neurônios não se mostraram susceptíveis à infecção pelo vírus Juruaçá, porém a presença do antígeno viral nestas células foi confirmada por imunohistoquímica. A microscopia eletrônica de transmissão revelou a presença de partículas esféricas, com um diâmetro médio de 23-30nm. Alterações anatomo-patológicas foram observadas principalmente no SNC de camundongos infectados experimentalmente com o vírus Juruaçá. O resultado do RT-PCR sugere que o vírus Juruaçá pode ser um novo vírus pertencente à família Picornaviridae, gênero Enterovirus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muitos estudos têm sido realizados para o entendimento da neuropatogênese das encefalites virais a partir de trabalhos experimentais, porém, nenhum estudo experimental foi dedicado à compreensão da neuropatogênese de membros da família Picornaviridae isolados de morcegos na região amazônica. O vírus Juruaçá, um desses agentes, parcialmente caracterizado como membro da família Picornaviridae por Araújo e colaboradores (2006), causou lesões no encéfalo de camundongos neonatos com presença de gliose reativa, apesar de não provocar efeito citopático (ECP) em cultivos primários de células do sistema nervoso central (SNC), sugerindo que este agente viral seja responsável pela morte dos animais devido a uma intensa resposta imune. O objetivo desse trabalho foi investigar a resposta imune no SNC e alterações celulares causadas pelo vírus Juruaçá em camundongos albinos da linhagem BALB/c neonatos a partir de análises histopatológicas, de ativação microglial e da expressão de citocinas, óxido nítrico (NO) e espécies reativas de oxigênio (ROS). Para tanto, foram realizados processamento de amostras para histopatologia, ensaios imunoenzimáticos, imunohistoquímicos e de imunofluorescência, além de testes para quantificação de NO e ROS e análises estatísticas. Nossos resultados demonstraram que o vírus Juruaçá induz lesões por todo o encéfalo, com maior intensidade no parênquima cortical. Os testes imunohistoquímicos demonstraram a presença de antígenos virais e de micróglias reativas distribuídos por todo o encéfalo e região anterior da medula espinhal. Micróglias com aspecto ameboide, demonstrando intensa ativação, foram observadas principalmente no córtex cerebral, bulbo olfatório, núcleo olfatório anterior, prosencéfalo e diencéfalo próximo ao ventrículo lateral. A produção das citocinas anti-inflamatórias (IL-10, IL-4) diminuiu ao longo do tempo, enquanto que as pró-inflamatórias (IL-12, IL-6, IL-1β, TNF-α, IFN-γ) aumentaram significativamente a partir do 8º dia. Os ensaios para detecção de ROS demonstraram grande produção de radicais superóxido desde o 4º dia, já a produção de NO foi sempre menor nos animais infectados. Provavelmente, a ativação das células gliais, principalmente micróglias, e consequente produção de citocinas pró-inflamatórias e ROS promoveram uma ação devastadora sobre as células do SNC, que coincide com a intensificação dos sinais clínicos. Diante do exposto, ficou evidente que os nossos resultados indicam que o vírus Juruaçá é responsável por uma doença de cunho inflamatório que leva a óbito 100% de camundongos neonatos infectados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel picornavirus was isolated from specimens of a diseased European eel (Anguilla anguilla). This virus induced a cytopathic effect in eel embryonic kidney cells and high mortality in a controlled transmission study using elvers. Eel picornavirus has a genome of 7,496 nucleotides that encodes a polyprotein of 2,259 amino acids. It has a typical picornavirus genome layout, but its low similarity to known viral proteins suggests a novel species in the family Picornaviridae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equine rhinovirus 1 (ERhV1) is a respiratory pathogen of horses which has an uncertain taxonomic status. We have determined the nucleotide sequence of the ERhV1 genome except for a small region at the 5' end. The predicted polyprotein was encoded by 6741 nucleotides and possessed a typical picornavirus proteolytic cleavage pattern, including a leader polypeptide. The genomic structure and predicted amino acid sequence of ERhV1 were more similar to those of foot-and-mouth disease viruses (FMDVs), the only members of the aphthovirus genus, than to those of other picornaviruses. Features which were most similar to FMDV included a 16-amino acid 2A protein which was 87.5% identical in sequence of FMDV 2A, a leader (L) protein similar in size to FMDV Lab and the possibility of a truncated L protein similar in size to FMDV Lb, and a 3C protease which recognizes different cleavage sites. However, unlike FMDV, ERhV1 had only one copy of the 3B (VPg) polypeptide. The phylogenetic relationships of the ERhV1 sequence and nucleotide sequences of representative species of the five genera of the family Picornaviridae were examined. Nucleotide sequences coding for the complete polyprotein, the RNA polymerase, and VP1 were analyzed separately. The phylogenetic trees confirmed that ERhV1 was more closely related to FMDV than to other picornaviruses and suggested that ERhV1 may be a member, albeit very distant, of the aphthovirus genus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease that causes significant economic losses to poultry producers worldwide due to elevated feed conversion ratios, decreased body weight during growth, and excessive culling. Of specific interest are the viral agents associated with RSS which have been difficult to fully characterise to date. Past research into the aetiology of RSS has implicated a wide variety of RNA and DNA viruses however, to date, no individual virus has been identified as the main agent of RSS and the current opinion is that it may be caused by a community of viruses, collectively known as the virome. This paper attempts to characterise the viral pathogens associated with 2 – 3 week old RSS-affected and unaffected broiler chickens using next-generation sequencing and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA & RNA viral families, along with 2 unidentified categories, comprised of 31 distinct viral genera and 7 unclassified genera. The most abundant viral families identified in this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically significant viruses associated with the disease such as chicken astrovirus, avian nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel viruses such as chicken megrivirus and sicinivirus 1 and will help expand the knowledge related to enteric disease in broiler chickens, provide insights into the viral constituents of a healthy avian gut, and identify a variety of enteric viruses and viral communities appropriate for further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Picornaviridae family consists of positive-strand RNA viruses that are the causative agents of a variety of diseases in humans and animals. Few drugs targeting picornaviruses are available, making the discovery of new antivirals a high priority. Here, we identified and characterized three compounds from a library of kinase inhibitors that block replication of poliovirus, coxsackievirus B3, and encephalomyocarditis virus. The antiviral effect of these compounds is not likely related to their known cellular targets because other inhibitors targeting the same pathways did not inhibit viral replication. Using an in vitro translation-replication system, we showed that these drugs inhibit different stages of the poliovirus life cycle. A4(1) inhibited the formation of a functional replication complex, while E5(1) and E7(2) affected replication after the replication complex had formed. A4(1) demonstrated partial protection from paralysis in a murine model of poliomyelitis. Poliovirus resistant to E7(2) had a single mutation in the 3A protein. This mutation was previously found to confer resistance to enviroxime-like compounds, which target either PI4KIIIβ (major enviroxime-like compounds) or OSBP (minor enviroxime-like compounds), cellular factors involved in lipid metabolism and shown to be important for replication of diverse positive-strand RNA viruses. We classified E7(2) as a minor enviroxime-like compound, because the localization of OSBP changed in the presence of this inhibitor. Interestingly, both E7(2) and major enviroxime-like compound GW5074 interfered with the viral polyprotein processing. Multiple attempts to isolate resistant mutants in the presence of A4(1) or E5(1) were unsuccessful, showing that effective broad-spectrum antivirals could be developed on the basis of these compounds. Studies with these compounds shed light on pathways shared by diverse picornaviruses that could be potential targets for the development of broad-spectrum antiviral drugs.