1000 resultados para Picea wilsonii
Resumo:
花粉是种子植物受精过程中雄性生殖细胞的载体,在有性生殖过程中起着非常重要的作用。花粉与柱头、花柱、子房等都有相互作用,起识别作用的是细胞壁蛋白,而花粉粒的壁有明显的两层:内壁和外壁。裸子植物花粉与被子植物相比具有萌发时间长、生长缓慢、授粉-受精时间长等特点。花粉的内壁与外壁在花粉萌发和生长过程中的功能仍然缺乏研究,但是迄今为止现有的分子生物学技术在获得裸子植物花粉壁突变体方面并没有发挥作用。本研究以裸子植物白皮松(Pinus bungeana)和青杄(Picea wilsonii)花粉为材料建立裸子植物花粉脱壁的体系,包 括脱外壁花粉和花粉原生质体的制备,即将花粉的两层壁逐层剥离,并在此基础上进行了细胞学研究。 本文首先建立了裸子植物脱外壁花粉的分离技术。实验表明低浓度的酶组合短暂酶解后,辅以机械研磨,可以释放出大量的脱外壁花粉。其中在这两种裸子植物中的处理稍有不同,白皮松的脱外壁花粉在含12%蔗糖,0.5%纤维素酶和0.3%离析酶的溶液,pH 5.8 ,孵育半小时,辅以一定力度机械研磨的方法获得,而青杄脱外壁花粉的条件是0.8%纤维素酶和0.5%离析酶、12%蔗糖的溶液,其它条件类似。 其次我们成功建立了一种快速、有效、可重复的分离白皮松和青杄花粉原生质体的系统,分离频率可高达70%。对白皮松而言,最好的分离条件是2% 纤维素酶、1.5%离析酶、15%蔗糖、pH 5.8,黑暗、24℃条件下轻微振荡、酶解6 小时。3%纤维素酶和2%离析酶组合比较适宜青杄花粉原生质体的分离,同时需要较低浓度的蔗糖溶液(12%)。青杄花粉原生质体要远大于白皮松花粉原生质体,前者直径为80µm,后者为40µm。强烈的FDA 荧光显示很好的活性。在制备的过程中,酶的浓度、酶的配比、酶解时间、渗透压调节剂、起始材料对分离率都有影响。 运用免疫荧光标记技术显示,脱外壁花粉的表面存在纤维素、果胶质、阿拉伯半乳聚糖蛋白(AGPs)和凝集素结合位点,其中纤维素在整个表面都有分布,但在萌发孔附近的荧光最强;白皮松脱外壁花粉表面有胼胝质的存在,主要位于靠近气囊的部位,而青杄脱外壁花粉表面未能检测到胼胝质;酸性果胶质在白皮松脱外壁花粉靠近萌发孔处的荧光稍弱于其它部位,而在青杄脱外壁花粉的表面近极端的荧光要强于远极端;白皮松脱外壁花粉表面有酯化果胶的沉积,而青杄脱外壁花粉表面缺失酯化果胶;白皮松和青杄两种植物脱外壁花粉表面均有阿拉伯半乳糖的分布,而白皮松脱外壁花粉的荧光要远强于青杄;白皮松和青杄脱外壁花粉表面有伴刀豆凝集素(Conconavalin agglutinin, Con A )和大豆凝集素(soybean agglutinin, SBA )结合位点的分布,而缺失麦胚凝集素(wheat germ agglutinin, WGA)结合位点。另外,傅立叶红外光谱(FTIR) 分析结果也同样支持上述结论。
Resumo:
植物在长期的进化过程中,已经对其生存环境具备了各种适应对策。放牧影响下草原植物的生态适应策略,决定了其是否能够忍耐或者适应放牧生境从而维持自身的生存和种群的延续。研究植食性动物对植物的影响有助于制定合理的放牧制度和草地利用方式,从而为防止草原退化和恢复退化草地提供重要的理论依据;同时研究植物对放牧的响应策略,对于草原生物多样性的保护和草原生物资源的合理利用具有重要的理论和实践意义。 本文以中科院内蒙古草原生态系统定位研究站放牧综合试验样地中的小叶锦鸡儿为主要研究对象。通过长期不同放牧强度的放牧试验和唾液涂抹等模拟试验,从形态学、有性生殖、种子萌发和遗传多样性等方面,探讨了小叶锦鸡儿对放牧家畜(绵羊)采食的生物学响应。本研究得到以下主要结论: 1. 通过小叶锦鸡儿形态和有性生殖的实验,可以看到放牧改变了该种植物的形态和生殖特性,不同放牧强度对其影响的程度是不相同的。在啃食压力下,小叶锦鸡儿的营养、生殖和防御之间存在消长关系。随着放牧强度的增加,小叶锦鸡儿对营养器官和有性生殖器官的投资均减少,而对防御器官的投资有增加的趋势,主要体现在:个体的小型化(植株高度、叶轴长度、小叶大小)和果荚数目及成熟种子数都随着放牧强度的增加而明显减少;物理性防御器官――刺,其密度和长度都明显的增加。同时,放牧也对植物花粉的品质产生了消极影响。 2. 放牧不仅影响了植物体本身的生物学特性,而且影响了子代的生物学特性。不同放牧强度下的植株产生的种子,其萌发速率明显不同。同时放牧强度和沙埋深度对小叶锦鸡儿的出苗率均具有显著影响,随着沙埋深度增加,出苗率明显降低,0~2cm是其适宜出苗的沙埋深度;浅层沙埋处理下,轻度放牧和重度放牧的出苗率差异显著。与轻度放牧相比,重牧条件下同一沙埋深度的种子出苗时间明显推迟;在相同放牧压力下,沙埋深度也影响了出苗时间。 3. 采食活动对植物本身的形态、生殖以及子代的萌发特性都产生了影响;通过AFLP实验证明了小叶锦鸡儿在长期的放牧历史活动中已经发生了遗传多样性的变化,重度放牧强度下的植株与轻度放牧条件下的植株具有相对较远的遗传距离,也就是说,小叶锦鸡儿种群的分化与放牧强度具有密切的关系。 4. 三种不同生活型植物(灌木-小叶锦鸡儿、半灌木-冷蒿和草本-羊草)对绵羊唾液涂抹的响应不同,刈割和涂抹绵羊唾液能够增加植物的净地上生物量,并促进植株增加地上部分的光合产物投资。同时表明,简单的机械剪除不能够真正反应放牧家畜采食所产生的生物学效应。
Resumo:
Conifers are resistant to attack from a large number of potential herbivores or pathogens. Previous molecular and biochemical characterization of selected conifer defence systems support a model of multigenic, constitutive and induced defences that act on invading insects via physical, chemical, biochemical or ecological (multitrophic) mechanisms. However, the genomic foundation of the complex defence and resistance mechanisms of conifers is largely unknown. As part of a genomics strategy to characterize inducible defences and possible resistance mechanisms of conifers against insect herbivory, we developed a cDNA microarray building upon a new spruce (Picea spp.) expressed sequence tag resource. This first-generation spruce cDNA microarray contains 9720 cDNA elements representing c. 5500 unique genes. We used this array to monitor gene expression in Sitka spruce (Picea sitchensis) bark in response to herbivory by white pine weevils (Pissodes strobi, Curculionidae) or wounding, and in young shoot tips in response to western spruce budworm (Choristoneura occidentalis, Lepidopterae) feeding. Weevils are stem-boring insects that feed on phloem, while budworms are foliage feeding larvae that consume needles and young shoot tips. Both insect species and wounding treatment caused substantial changes of the host plant transcriptome detected in each case by differential gene expression of several thousand array elements at 1 or 2 d after the onset of treatment. Overall, there was considerable overlap among differentially expressed gene sets from these three stress treatments. Functional classification of the induced transcripts revealed genes with roles in general plant defence, octadecanoid and ethylene signalling, transport, secondary metabolism, and transcriptional regulation. Several genes involved in primary metabolic processes such as photosynthesis were down-regulated upon insect feeding or wounding, fitting with the concept of dynamic resource allocation in plant defence. Refined expression analysis using gene-specific primers and real-time PCR for selected transcripts was in agreement with microarray results for most genes tested. This study provides the first large-scale survey of insect-induced defence transcripts in a gymnosperm and provides a platform for functional investigation of plant-insect interactions in spruce. Induction of spruce genes of octadecanoid and ethylene signalling, terpenoid biosynthesis, and phenolic secondary metabolism are discussed in more detail.
Resumo:
An important challenge in forest industry is to get the appropriate raw material out from the forests to the wood processing industry. Growth and stem reconstruction simulators are therefore increasingly integrated in industrial conversion simulators, for linking the properties of wooden products to the three-dimensional structure of stems and their growing conditions. Static simulators predict the wood properties from stem dimensions at the end of a growth simulation period, whereas in dynamic approaches, the structural components, e.g. branches, are incremented along with the growth processes. The dynamic approach can be applied to stem reconstruction by predicting the three-dimensional stem structure from external tree variables (i.e. age, height) as a result of growth to the current state. In this study, a dynamic growth simulator, PipeQual, and a stem reconstruction simulator, RetroSTEM, are adapted to Norway spruce (Picea abies [L.] Karst.) to predict the three-dimensional structure of stems (tapers, branchiness, wood basic density) over time such that both simulators can be integrated in a sawing simulator. The parameterisation of the PipeQual and RetroSTEM simulators for Norway spruce relied on the theoretically based description of tree structure developing in the growth process and following certain conservative structural regularities while allowing for plasticity in the crown development. The crown expressed both regularity and plasticity in its development, as the vertical foliage density peaked regularly at about 5 m from the stem apex, varying below that with tree age and dominance position (Study I). Conservative stem structure was characterized in terms of (1) the pipe ratios between foliage mass and branch and stem cross-sectional areas at crown base, (2) the allometric relationship between foliage mass and crown length, (3) mean branch length relative to crown length and (4) form coefficients in branches and stem (Study II). The pipe ratio between branch and stem cross-sectional area at crown base, and mean branch length relative to the crown length may differ in trees before and after canopy closure, but the variation should be further analysed in stands of different ages and densities with varying site fertilities and climates. The predictions of the PipeQual and RetroSTEM simulators were evaluated by comparing the simulated values to measured ones (Study III, IV). Both simulators predicted stem taper and branch diameter at the individual tree level with a small bias. RetroSTEM predictions of wood density were accurate. For focusing on even more accurate predictions of stem diameters and branchiness along the stem, both simulators should be further improved by revising the following aspects in the simulators: the relationship between foliage and stem sapwood area in the upper stem, the error source in branch sizes, the crown base development and the height growth models in RetroSTEM. In Study V, the RetroSTEM simulator was integrated in the InnoSIM sawing simulator, and according to the pilot simulations, this turned out to be an efficient tool for readily producing stand scale information about stem sizes and structure when approximating the available assortments of wood products.
Resumo:
The objectives of this study were to analyze the impact of structural stand characteristics on ignition potential, surface fuel moisture, and fire behavior in Pinus sylvestris L. and Picea abies (L.) Karst stands in Finland and to explain stand-specific fire danger using the Canadian Fire Weather Index System and the Finnish Fire Risk Index. Additionally, the study analyzes the relationship between observed fire activity and fire weather indices at different stages of growing season. Field experiments were carried out in Pinus sylvestris or Picea abies dominated stands during fire seasons 2001 and 2002. Observations on ignition potential, fuel moisture, and fire behavior were analyzed in relation to stand structure and the outputs of the Finnish and Canadian fire weather indices. Seasonal patterns of fire activity were examined based on national fire statistics 1996 2003, effective temperature sum, and the fire weather indices. Point fire ignition potential was highest in Pinus clear-cuts and lowest in closed Picea stands. Moss-dominated surface fuels were driest in clear-cut and sapling stage stands and presented the highest moisture content under closed Picea canopy. Pinus sylvestris stands carried fire under a wide range of fire weather conditions under which Picea abies stands failed to sustain fire. In the national fire records, the daily number of reported ignitions presented its highest value during late fire season whereas the daily area burned peaked most substantially during early season. The fire weather indices correlated significantly with ignition potential and fuel moisture but were unable to explain fire behavior in the experimental fires. During the initial and final stages of the growing season, fire activity was disconnected from weather-based fire danger ratings. Information on stand structure and season stage would benefit the assessment of fire danger in Finnish forest landscape for fire suppression and controlled burning purposes.
Resumo:
The aim of this thesis was to study the basic relationships between thinning and fertilisation, tree growth rate and wood properties of Norway spruce (Picea abies (L.) Karst.) throughout a stand rotation. The material consisted of a total of 109 trees from both long-term thinning (Heinola, 61°10'N, 26°01'E; Punkaharju, 61°49'N, 29°19'E) and fertilisation-thinning experiments (Parikkala, 61°36'N, 29°22'E; Suonenjoki, 62°45'N, 27°00'E) in Finland. Wood properties, i.e., radial increment, wood density, latewood proportion, tracheid length, cell wall thickness and lumen diameter, as well as relative lignin content, were measured in detail from the pith to the bark, as well as from the stem base towards the stem apex. Intensive thinning and fertilisation treatments of Norway spruce stands increased (8% 64%) the radial increment of studied trees at breast height (1.3 m). At the same time, a faster growth rate slightly decreased average wood density (2% 7%), tracheid length (0% 9%) and cell wall thickness (1% 17%). The faster growth resulted in only small changes (0% 9%) in lumen diameter and relative lignin content (1% 2%; lignin content was 25.4% 26%). However, the random variation in wood properties was large both between and within trees and annual rings. The results of this thesis indicate that the prevailing thinning and fertilisation treatments of Norway spruce stands in Fennoscandia may significantly enhance the radial increment of individual trees, and cause only small or no detrimental changes in wood and tracheid properties.
Resumo:
Tutkimus on osa Metsäklusteri Oy:n Future Biorefinery –tutkimusohjelmaa, jossa kartoitetaan mahdollisuuksia hyödyntää metsäteollisuuden raaka-aineita aiempaa tarkemmin ja uusissa tuotteissa. Tutkimuksen tavoitteena on selvittää männyn (Pinus sylvestris L.) ja kuusen (Picea abies [L.] Karst.) juurten ja kantopuun rakenne ja ominaisuudet. Tutkimuksessa selvitetään löytyykö männyn ja kuusen juurista reaktiopuuta ja määritetään asetoniliukoisten uuteaineiden osuus kantoja juuripuussa. Tutkimusaineistona oli viisi eri-ikäistä mäntyä ja viisi eri-ikäistä kuusta. Juuri- ja kantoaineisto kerättiin Metsäntutkimuslaitoksen toimesta Parkanon seudulta (62.017°N, 23.017°E) hakkuun jälkeen. Maanalaisista juurista otettiin näytteet kolmelta eri etäisyydeltä juurenniskaan nähden. Kummankaan lajin juurista ei löytynyt varsinaista reaktiopuuta, mutta joissakin näytteissä havaittiin lievää reaktiopuuta. Lievää reaktiopuuta löytyi enemmän männyn kuin kuusen juurista, eikä sitä löytynyt lainkaan kaikkein ohuimmista, noin 2 cm paksuisista juurenosista. Männyn kannoissa uuteaineprosentti oli korkeampi kuin kuusen. Männyn juurissa uuteaineprosentti kasvoi edettäessä kohti juuren kärkeä. Kuusella uuteaineprosentti laski aluksi, mutta lähellä juuren kärkeä taas kasvoi. Kuoren uuteainepitoisuus oli molemmilla puulajeilla korkeampi kuin puuaineen. Tutkimusaineisto oli suppea, eikä tutkimuksessa pyritty tilastolliseen yleistettävyyteen. Laajemmasta aineistosta tehdylle tutkimukselle on tarvetta, sillä turvekankailta saatavan puun tarjonta on Suomessa kasvussa, mutta juurten uuteaine- ja reaktiopuututkimuksia on tehty vain kivennäismailta kerätyistä aineistoista.
Resumo:
Anthesis was studied at the canopy level in 10 Norway spruce stands from 9 localities in Finland from 1963 to 1974. Distributions of pollen catches were compared to the normal Gaussian distribution. The basis for the timing studies was the 50 per cent point of the anthesis-fitted normal distribution. Development up to this point was given in calendar days, in degree days (>5 °C) and in period units. The count of each parameter began on March 19 (included). Male flowering in Norway spruce stands was found to have more annual variation in quantity than in Scots pine stands studied earlier. Anthesis in spruce in northern Finland occurred at a later date than in the south. The heat sums needed for anthesis varied latitudinally less in spruce than in pine. The variation of pollen catches in spruce increased towards north-west as in the case of Scots pine. In the unprocessed data, calendar days were found to be the most accurate forecast of anthesis in Norway spruce both for a single year and for the majority of cases of stand averages over several years. Locally, the period unit could be a more accurate parameter for the stand average. However, on a calendar day basis, when annual deviations between expected and measured heat sums were converted to days, period units were narrowly superior to days. The geographical correlations respect to timing of flowering, calculated against distances measured along simulated post-glacial migration routes, were stronger than purely latitudinal correlations. Effects of the reinvasion of Norway spruce into Finland are thus still visible in spruce populations just as they were in Scots pine populations. The proportion of the average annual heat sum needed for spruce anthesis grew rapidly north of a latitude of ca. 63° and the heat sum needed for anthesis decreased only slighty towards the timberline. In light of flowering phenology, it seems probable that the northwesterly third of Finnish Norway spruce populations are incompletely adapted to the prevailing cold climate. A moderate warming of the climate would therefore be beneficial for Norway spruce. This accords roughly with the adaptive situation in Scots pine.
Resumo:
Root and butt rot is the most harmful fungal disease affecting Norway spruce in southern Finland. In approximately 90 % of cases the causal agent is Heterobasidion parviporum. Root and butt rot infections have not been reported in Finnish peatlands. However, the increase in logging operations in peatlands means there is a risk that the fungus will eventually spread to these areas. The aim of this study was to find out the impact of growing site on the resistance of Norway spruce to Heterobasidion parviporum infections. This was investigated by artificially inoculating H. parviporum to spruce trees in pristine mire, drained peatland and mineral soil and comparing the defence reactions. Additionally, the effect of genotype on resistance was studied by comparing the responses of spruce clones representing different geographic origins. The roots and stems of the trees to be sampled were wounded and inoculated with wood dowels pre-colonised by H. parviporum hyphae. The resulting necrosis around the point of inoculation was observed. It was presumed that increased length of necrosis indicates high susceptibility of the tree to the disease. The relationship between growth rate and host resistance was also studied. The results indicated that growing site does not have a statistically significant effect on host resistance. The average length of necrosis around the point of inoculation was 35 mm in pristine mire, 37 mm in drained peatland and 40 mm in mineral soil. It was observed that growth rate does not affect resistance, but that the genotype of the tree does have an effect. The most resistant spruce clone was the one with Russian origin. The results suggest that the spruce stands in peatlands are not more resistant to root and butt rot infections than those in mineral soil. These findings should be taken into consideration when logging peatland forests.