1000 resultados para Picea asperata Mast.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

本研究通过粗枝云杉不同种群进行的温室半控制试验,采用植物生态学、生理学和生物化学的研究方法,系统地研究了粗枝云杉不同种群抗旱性的生长、形态、生理和生化机理,并结合有关研究进行综合分析,得出主要研究结论如下: 1.粗枝云杉对干旱胁迫的综合反应 粗枝云杉在干旱胁迫下的适应机制为:(1)相对生长速率及植株结构的调整:干旱胁迫下虽然植株相对生长速率显著降低,且有相对较多的生物量向根部分配,但并未发现细根/总根比增加。(2)粗枝云杉对干旱胁迫的光合作用表现为:干旱胁迫显著地降低了控制的理想条件下的气体交换,但干旱胁迫对PSII最大光化学效率(Fv/Fm)没有影响,表明干旱并未影响到光合机构。(3)干旱还影响了很多生理生化过程,包括渗透调解物质(游离脯氨酸)、膜脂过氧化产物、脱落酸(ABA)含量的增加,以及保护酶活性的升高。这些结果证明植物遭受干旱胁迫后发生了一系列的形态、生理和生化响应,这些变化能提高干旱时期植物的存活和生长能力。 2.粗枝云杉不同种群对干旱胁迫反应的种群差异 粗枝云杉三个种群-干旱种群(四川丹巴和甘肃迭部)和湿润种群(四川黑水)对干旱适应不同,这种不同应归因于它们采用的用水策略不同:在水分良好和干旱胁迫条件下,受试种群在相对生长速率和水分利用效率(WUE)方面都表现出显著的种群间差异。与湿润种群相比,干旱种群在两种水分条件下有更高的WUE。粗枝云杉不同种群的碳同位素组分(δ13C)只在干旱胁迫下有显著差异,并且这种差异在水分良好时比干旱胁迫条件下小,说明生理响应和干旱适应性之间的关系受植物内部抗旱机制和外部环境条件(如水分可利用性)或两者互作效应的影响。这些结果说明干旱种群和湿润种群所采用的用水策略不同。干旱种群有更强的抗旱能力,采用的是节水型的用水策略,而湿润种群抗旱能力较弱,采用的是耗水型的用水策略。 3. 遮荫对粗枝云杉不同种群抗旱性影响 干旱胁迫显著降低了全光条件下叶相对含水量(RWC)、相对生长速率、气体交换参数、PSII的有效量子产量(Y),提高了非光化学猝灭效率(qN)、水分利用效率、脯氨酸(PRO)积累、脱落酸(ABA)含量及保护酶活性。然而这种变化在遮荫条件下不明显。我们得出结论适度遮荫降低了干旱对植物的胁迫作用。另一方面,在干旱条件下,与湿润种群相比,干旱种群抗旱性更强,表现在干旱种群净光合速率与单位重量上叶氮含量(Nmass)降低较少。另外,干旱种群表现出更为敏感的气孔导度,更高的热耗散能力(qN)能力、用水效率、ABA积累、保护酶活性,以及更低的总用水量、相对生长速率。这一结果表明这两种群采用不同的生理策略对干旱和遮荫做出反应。许多生长和生理反应差异与这两个种群原产地气候条件相适应。 4. 外源脱落酸(ABA)喷施对粗枝云杉不同种群抗旱性影响 外源ABA喷施在干旱和水分良好条件下均不同程度地提高了根/茎比,表明根和茎对ABA敏感程度不同。实验结果还表明,外源ABA喷施对这两个种群在干旱胁迫期间影响不同。干旱胁迫期间,伴随着ABA喷施,湿润种群净光合速率(A)显著降低,而干旱种群净光合速率变化不明显。另一方面,外源ABA喷施显著提高了干旱条件下干旱种群的单位叶面积重(LMA)、根/茎比、细根/总根(Ft)比、水分利用效率(WUE)、ABA含量, 以及保护酶活性。然而,外源ABA喷施对湿润种群的上述测定指标没有显著影响。这一结果表明干旱种群对外源ABA喷施更为敏感, 反应在更大的气孔导度降低,更高的生物量可塑性,及更高的水分利用效率、ABA含量和保护酶活性。综上所述,我们得出结论,粗枝云杉对外源ABA敏感性因种群的不同而不同。该研究结果可为两个明显不同种群在适应分化方面提供强有力的证据。 Arid or semi-arid land covers more than half of China's land territory. In arid systems, severe shortages of soil water often coincide with periods of high temperatures and high solar radiation, producing multiple stresses on plant performance. Protection from high radiation loads in shaded microenvironments during drought may compensate for a loss of productivity due to reduced irradiance when water is available. Additionally, ABA, a well-known stress-inducible plant hormone, has long been studied as a potential mediator for induction of drought tolerance in plants. Picea asperata Mast., which is one of the most important tree species used for the production of pulp wood and timber, is a prime reforestation species in western China. In this experiment, different population of P. asperata were used as experiment material to study the adaptability to drought stress and population differences in adaptabiliy, and the effects of shade and exogenous abscisic acid (ABA) application on the drought tolerance. Our results cold provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem in the arid and semi-arid area, and provide a strong evidence for adaptive differentiation of different populations, and so may be used as criteria for species selection and tree improvement. The results are as follows: 1. A large set of parallel response to drought stress Drought stress caused pronounced inhibition of the growth and increased relatively dry matter allocation into the root; drought stress also caused pronounced inhibition of photosynthesis, while drought showed no effects on the maximal quantum yield of PSII photochemistry (Fv/Fm) in dark-adapted leaves, indicating that drought had no effects on the primary photochemistry of PSII. However, in light-adapted leaves, drought reduced the quantum yield of PSII electron transport (Y) and increased the non-photochemical quenching (qN). Drought also affected many physiological and biochemical processes, including increases in superoxide dismutase (SOD), ascorbate peroxidase (APX) activities, malondialdehyde and ABA content. These results demonstrate that there are a large set of parallel changes in the morphological, physiological and biochemical responses when plants are exposed to drought stress; these changes may enhance the capability of plants to survive and grow during drought periods. 2. Difference in adaptation to drought stress between contrasting populations of Picea asperata There were significant population differences in growth, dry matter allocation and water use efficiency. Compared with the wet climate population (Heishui), the dry climate population (Dan ba and Jiebu) showed higher LMA, fine root/total root ratio and water use efficiency under drought-stressed treatments. The results suggested that there were different water-use strategies between the dry population and the wet population. The dry climate population with higher drought tolerance may employ a conservative water-use strategy, whereas the wet climate population with lower drought tolerance may employ a prodigal water-use strategy. These variations in drought responses may be used as criteria for species selection and tree improvement. 3. The effects of shade on the drought tolerance For both populations tested, drought resulted in lower needle relative water content (RWC), relative growth rate (RGR), gas exchange parameters and effective PSII quantum yield (Y), and higher non-photochemical quenching (qN), water use efficiency (WUE), proline (PRO) and abscisic acid (ABA) accumulation, superoxide dismutase (SOD), ascorbate peroxidase (APX) activities as well as malondialdehyde (MDA) levels and electrolyte leakage in sun plants, whereas these changes were not significant in shade plants. Our study results implied that shade, applied together with drought, ameliorated the detrimental effects of drought. On the other hand, compared with the wet climate population, the dry climate population was more tolerant to drought in the sun treatment, as indicated by less decreases in A and mass-based leaf nitrogen content (Nmass), more responsive stomata, greater capacity for non-radiative dissipation of excitation energy as heat (analysed by qN), and higher WUE,higher level of antioxidant enzyme activities,higher ABA accumulation as well as lower MDA content and electrolyte leakage. Many of the differences in growth and physiological responses reported here are consistent with the climatic differences between the locations of the populations of P. asperata. 4. The effects of exogenous abscisic acid (ABA) application on the drought tolerance For both populations tested, exogenous ABA application increased root/shoot ratio (Rs) under well-watered and drought-stressed conditions, indicating that there was differential sensitivity to ABA in the roots and shoots. However, it appeared that ABA application affected the two P. asperata populations very differently during drought. CO2 assimilation rate (A) was significantly decreased in the wet climate population, but only to a minor extent in the dry climate population following ABA application during soil drying. On the other hand, ABA application significantly decreased stomatal conductance (gs), transpiration rate (E) and malondialdehyde (MDA) content, and significantly increased leaf mass per area (LMA), Rs, fine root/total root ratio (Ft), water use efficiency (WUE), ABA contents, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities under drought condition in the dry climate population, whereas ABA application did not significantly affect these parameters in the wet population plants. The results clearly demonstrated that the dry climate population was more responsive to ABA application than the wet climate population, as indicated by the strong stomata closure and by greater plasticity of LMA and biomass allocation, as well as by higher WUE, ABA content and anti-oxidative capacity to defense against oxidative stress, possibly predominantly by APX. We concluded that sensitivity to exogenous ABA application is population dependent in P. asperata. Our results provide strong evidence for adaptive differentiation between populations of P. asperata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

西南地区在我国的经济发展和生态环境建设中占重要地位,但也是我国生态环境最脆弱的地区之一,生态系统退化,生态功能减弱,严重制约着西南林业的可持续经营与发展。本项目采用DNA 分子标记SSR 研究不同生境条件下粗枝云杉群体的遗传变异及其时空分布格局,考察遗传变异与复杂的山地生态环境间的潜在联系,系统地揭示粗枝云杉天然群体与环境系统相互作用的生态适应与分子进化机制。粗枝云杉适应性强,生长迅速,在植树造林和工业用材方面占有重要地位,研究成果可为中国西南部亚高山天然林的可持续经营及退化生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. SSR 位点变异丰富,等位基因频率的分布格局多样。7 个SSR 标记全是多态位点,每位点的等位基因数变化范围为13~24,平均为19.9 个。SSR 位点的等位基因片段长度范围变化较大。73.1%的等位基因变异遵循逐步突变模型(SSM)而发生1 个重复基元的变化,22.3%和4.6%的变异分别按两阶段突变模型(TMP)发生1 个重复基元以上的变化和在SSR 位点侧翼区发生1 个碱基变化的插入-删除事件。 2. 粗枝云杉拥有中等偏高水平的遗传多样性和相对大的群体间遗传分化。通过分析代表10 个群体的250 个个体在7 个SSR位点的变化,调查了源自中国西南山区的粗枝云杉的微卫星变异。相当高的遗传多样性和强烈的群体分化发生在粗枝云杉中, 其群体平均Nei's 期望杂合度为0.707 , 群体间遗传距离为0.121~0.224(FST)和0.100~0.537(RST)。然而,群体间遗传距离与地理距离之间无相关性,从而排除了简单的距离分离模式并暗示迁移不是影响粗枝云杉遗传变异格局的主要因素。事实上,使用私有等位基因估算的基因流数量非常低,仅等于0.753。等位基因置换检验(Allele permutation tests)揭示逐步突变及遗传漂变都对群体间分化有贡献。另外,在多数位点检测到显著的群体间遗传差异,这个结果说明自然选择,假设通过环境压力,是引起粗枝云杉微地理分化的主要因素之一。根据SSR基因型,250 个粗枝云杉个体的70%被正确地归类入其各自的来源群体,结果表明微卫星(SSR)对区分来自中国不同生态地理位点的粗枝云杉基因型是有效的。 3. 在SSR、RAPD 和AFLP 位点,显著的群体间遗传结构被发现的,但三种标记间遗传分化程度和群体遗传关系有差异。利用来自10 个群体的247 个个体,我们报告了关于样本粗枝云杉群体间遗传关系的总体看法。根据各自对评价遗传关系的信息能力和适用性,SSR、RAPD 和AFLP 标记被选用,三种技术非常有效地区别这些基因型。使用的SSR、RAPD 和AFLP 标记分别估计平均Dice 相似性系数。Mantel 检验产生显著但相对低的共表型适合度(RAPD = 0.63£AFLP = 0.60和SSR = 0.75)。比较三种标记系统,RAPD 和AFLP 共表型指数相对高地相关(r =0.59),而RAPD 和SSR 及SSR 和AFLP 之间的相关系数分别是0.53 和0.35。所有系统树,包括不同标记资料结合获得的系统树,反映了多数群体依据它们的地理条件而成某种特定关系。结果暗示单个或结合标记系统能用来深入洞察粗枝云杉遗传研究,并且不同标记系统合并资料能提供更可靠的信息。 Southwestern region plays an important role in economic developmentand ecological construction in China. Yet, it is also one of the weak regionsof ecological environment in China with degraded ecosystem and imperfectfunction, which restricts the sustaining management and development ofsouthwestern forestry. The genetic variation and spatial distribution patternof P. asperata populations originating from different habitats wereinvestigated using SSR molecular markers in this study. The correlationsbetween genetic variation and ecological and environmental conditionswere detected, and the interaction between P. asperata populations andenvironmental system and the mechanism of ecological adaption -molecular evolution were revealed. Given the significant ecological andeconomic roles of the fast-growing and wide-adaptive species in reforestation and production of pulp wood and timber, the study couldprovide a strong theoretical evidence and scientific direction for thesustaining management of subalpine natural forest, and the afforestationand rehabilitation of degraded ecosystem. The results are as follows: 1. The genetic variation at SSR loci was abundant and the distributionof allelic frequencies was uneven. All seven loci were polymorphic, and thenumber of alleles per locus varied from 13 to 24 with a mean valueequaling 19.9. The allele sizes at SSR loci were found to vary widely.73.1% of allelic variation followed stepwise mutation model (SSM) whichresults increase or decrease by one repeat type, and 22.3% and 4.6% wereresulted from two-phase mutation model (TMP) with allele size varying bymore than one repeat type and from insertion-deletion events in theflanking regions at SSR loci with a single basepair changing, respectively. 2. P. asperata possessed a moderate to high level of genetic diversityand considerable genetic differentiation. Microsatellite variation of P.asperata. originating from the mountains of southwestern China wasinvestigated by analyzing variation at seven SSR loci in 250 individualsrepresenting ten populations. A fair degree of genetic diversity and strongpopulation subdivision occurred with the mean gene diversity (H) of 0.707,and genetic distances among populations varying between 0.121 and 0.224(FST) and between 0.100 and 0.537 (RST). However, inter-populationgenetic distances showed no correlation with geographic distances between the population sites. This ruled out a simple isolation by distance modeland suggested that migration does not have a great impact. In fact, theamount of gene flow, detected using private alleles, was very low, equalingonly 0.753. Allele permutation tests revealed that stepwise-like mutations,coupled with genetic drift, could contribute to population differentiation.Moreover, significant genetic differences between populations weredetected at most loci. The results indicate that natural selection, presumablythrough environmental stress, may be one of the main factors causingmicro-geographical differentiation in the genetic structure of P. asperata.Based on SSR genotypes, 70% of the 250 individuals were correctlyclassified into their sites of origin. This suggests that microsatellites (SSRs) are effective in distinguishing genotypes of P. asperata originating fromdiverse eco-geographical sites in China. 3. Using a set of 247 individuals from ten P. asperata populations wereport an overview on the genetic relationship among the sampled P.asperata populations. RAPD, AFLP and SSR were used in terms of theirinformativeness and applicability for evaluate relationship and all threetechniques discriminated the genotypes very effectively. Mean Dicesimilarities coefficient were estimated using RAPD, AFLP and SSR,respectively. The Mantel test resulted in a significant but relatively low fit(RAPD = 0.63, AFLP = 0.60 and SSR = 0.75) of cophenetic values.Comparing the three marker systems to each other, RAPD and AFLP cophenetic indices were highly correlated (r = 0.59), while correlationcoefficient between RAPD and SSR was r = 0.53 and between SSR andAFLP was r = 0.35. For all markers a relatively high similarity indendrogram topologies was obtained although some differences wereobserved. All the dendrograms, including that obtained by the combineduse of all the marker data, reflect some relationships for most of thepopulations according to their geographic conditions. The results indicatethat single or combined marker system could be used to insight into geneticstudy in P. asperata and the combined data of different marker systems canprovide more reliable information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。而另一方面,植物对UV-B辐射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B背景下的青杨种群在增强UV-B下的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B能力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B的不同响应。同时,干旱对粗枝云杉抗UV-B能力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B对粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B的胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B对青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B能力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B两个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B的交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B、外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B胁迫是利用平方波系统分别保证青杨苗暴露于外界UV-B强度和两倍于外界UV-B强度下。 研究结果显示,增强UV-B显著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B和外源ABA的特性。显著的UV-B和ABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

青藏高原东缘的亚高山针叶林是长江上游重要的生态屏障,经过近六十年的采伐后,取而代之的是大量人工种植的云杉纯林。目前,这些人工林已经表现出树种单一,结构层次简单等生态问题,其物种多样性及生态效益与同地带天然林相比差距较明显。如何丰富该地区物种多样性,完善人工林生态系统的生态功能是一个十分重要的课题。林下植物是人工林群落的重要组成部分,对维持群落的生物多样性及完善生态系统功能具有明显的作用。因此,研究该地区人工针叶林的林下植被对不同生境的适应性对于理解人工林生态系统物种多样性的形成和维持机制都具有重要的意义。 本文以青藏高原东部亚高山针叶林的主要森林类型----云杉人工林为研究对象,选择林下11种具有不同喜光特性的常见植物,分别设置人工林林冠下及成熟林窗为研究样地,通过对各种植物叶片形态与物质分配特征、叶片解剖学特征、叶片光合生理特性、植物自然分布特征等方面的比较分析,研究林下植物对不同光生境的适应策略及其适应能力,揭示不同物种对人工林生境的适应共性,为西南亚高山地区植被恢复及人工林的经营管理提供科学依据。具体研究结果如下: 在叶片形态和物质分配特征方面:在林窗光生境中,11种林下植物叶片比叶重(LMA)显著高于林下光生境的同种植物。同时,林窗下生长的植物叶片叶片厚度及栅栏细胞长度显著增加,这是影响叶片比叶重变化的直接原因。而多数植物叶重比在两种生境中无明显变化。说明在长期适应自然生境之后,植物可能更多地采取调节叶片组织细胞水平(即叶片功能细胞形态)及叶片器官水平(即单个叶片形态)特征的策略来适应各类生境,而非整株水平上的叶片总比重的增减。 在叶片解剖结构特征方面:多数阔叶物种栅栏组织厚度(PT)、栅栏组织厚度/海绵组织厚度(PT/ST)、栅栏细胞层数及近半数种的气孔密度(SD)在林窗生境中更大或更多,而叶片表皮细胞厚度(UET、LET)气孔长径(SL)及海绵组织厚度(ST)受两种生境影响不大。喜光特性相似的物种在生境适应策略上具有一定的趋同性。 在光合生理特征方面:在林窗生境中多数种植物的最大光合速率(Amax)、暗呼吸速率(Rd)及喜光植物光补偿点(LCP)显著或极显著高于林内生境同种植物。且在同一生境条件下,多数深度耐荫植物比喜光及轻度喜光植物有稍低的Rd和LCP。各植物在林内低光生境中具有更大的内禀光能转化效率,并在中午12:00~14:00之间光强最大的时刻发生了的最深程度的光抑制。多数种能通过调节自身某种光合素含量或色素之间的比例来适应不同的光生境,即通过增加叶绿素含量或降低Chla/b值来适应林内弱光生境,通过提高类胡萝卜素含量或单位叶绿素的类胡萝卜素含量降低强光带来的伤害。绝大多数物种并不采取调节叶片C、N含量的策略来适应不同的光生境。总之,植物部分光合参数(Amax、Rd、LCP)受生境的影响与其自身喜光特性有关,但另一些参数(Fv/Fm日变化、色素含量及比例、叶氮相对含量)受生境影响与其自身喜光特性无明显关联。 在表型可塑性方面:在叶片各表型参数中,器官水平及细胞水平的形态特征参数平均可塑性大于整株水平形态和物质分配特征参数可塑性;叶片光合组织的可塑性大于非光合组织可塑性;反映植物光合能力的参数可塑性大于叶片色素含量参数可塑性。植物叶片形态和物质分配、解剖学特征参数平均可塑性大小与其自身喜光特性基本吻合,即喜光种及轻度耐荫种各参数可塑性最高,深度耐荫种可塑性最小,而这种规律并未在光合生理参数的可塑性大小上体现出来。但是叶片形态和物质分配参数、光合生理参数的平均可塑性水平却大于叶片解剖学参数。 在植物自然分布特征方面:喜光物种云杉幼苗及歪头菜在林内生境中分布密度明显降低,深度耐荫种疏花槭却恰恰相反,更多数物种(7种植物)在两种生境中密度变化趋势不明显。从分布格局来看,7种植物在两种生境中均为聚集分布,但聚集强度为林窗>林内;少数物种桦叶荚迷、直穗小檗、冰川茶藨、黄背勾儿茶在林窗中为聚集型,在林内生境中的分布型发生改变而成为随机型,说明光生境的差异能影响到植物种群的分布特征。但这种影响程度与植物自身的喜光特性无关,同时与各物种叶片表型平均可塑性的大小也无明显关联。 The subalpine coniferous forest area in eastern Qinghai-Tibet Plateau is important ecology-barrier of upriver Yangtze. In past sixty years, those forests had been cut down and replaced with a lot of spruce plantations. At now, there are many ecology problems presenting to us such as singleness species, simple configuration, lower species diversity and ecological benefit than natural forests at the same belt. How to restore the species diversity and enhance the eco-function of the plantations is a very important issue. The understory plants are important part of plantation community, which improved the bio-diversity and eco-function distinctly of forests. So, it is very significance to study the adaptation of understory plants to different environment in plantation, and this study would helping us to understand how plantations to develop and remain their biodiversity. This study was conducted in a 60a spruce plantation in Miyaluo located in western Sichuan, China, and spruce plantation is major types of subalpine coniferous forest in eastern Qinghai-Tibet Plateau. In this paper, the leaf morphological and biomass-distributed characteristics, the anatomical characteristics, the photosynthetic characteristics and the distribution patterns characteristics of eleven different light-requirement understory species grown in two different environments (forest gaps and underneath close canopy) were studied and compared. The purpose of this study was to analyze the adaptation of this forest understory plants, to show up the commonness of these different light-requirement understory species in light acclimation, and to provide some scientific reference to manage and restore the vegetation of subalpine plantation of southwest China. The results were as follows: The leaf morphological and biomass-distributed characteristics: These eleven species in forest gaps had significantly higher dry weight per leaf area (LMA) than those under close canopy. The palisade parenchyma cells of the broad-leaved species in gaps were significantly longer than those grown under the canopy, which been a directed factor for the change of leaf mass per unit area (LMA) in different environment. But the leaf weight ratio (LWR) of most plants species were not evidently changed by the contrasted environments in our study. It was shown the morphological characteristics changing been adopted as a strategy of light acclimation for plants wasn’t on whole plant level (leaf weight ratio) but cellular level (the function cells morphological characteristics) and organic level (the leaf morphological and biomass-distributed characteristics) mostly. The leaf anatomical characteristics: Most broad-leaved plants in gaps increased palisade parenchyma thickness (PT), the palisade parenchyma cell layers and the ratio of palisade to spongy parenchyma (PT/ST). So did as almost about half species in this study in stomatal density (SD). No significant differences in thickness of leaf epidermal cells (UET, LET), stomatal length (SL) and spongy parenchyma (ST) between two environments of most species were observed. The results suggested that species with light-requirement approximately had convergent evolution on adaptation to light condition. The leaf photosynthetic characteristics: The dark respiration rate (Rd) of most plants species, the light compensation point (LCP) of light-demanding plants species in gaps were significantly increased than under close canopy in this study. In a same habitat, most deep-shade-tolerant plants had lower Rd and LCP than those light-demanding plants and slight-shade-tolerant plants. Each species has bigger inherent electron transport rate under close canopy than in gaps, and the greatest photoinhibition happened during 12 to 14 in the daytime. Most species could adapt different light environment by the way of changing their photosynthetic pigments content or the ratio of pigments content. For example, some plants under close canopy increased chlorophyll (Chl) or reduced the values of the ratio Chla/b to adapted the low light condition, some plants in gaps increased carotenoid (Car) or reduced the weight ratio CarChl to avoid been hurt in high light. For most plants, changing the content of C and N in leaf wasn’t a strategy of light acclimation. In conclusion, the variation of some leaf photosynthetic parameters in different light environment such as Fv/Fm, pigments, C and N in leaf related with the light-requirmnet of species, but the others such as Amax, Rd, LCP did not. The leaf plasticity indexes: Among those leaf plasticity indexes, the leaf morphological and biomass-distributed parameters on cellular and organic level were greater than on whole plant level for same species, and the photosynthetic parenchyma parameters were greater than non-photosynthetic parenchyma parameters in same leaf, and photosynthetic capability parameters were greater than photosynthetic pigments content parameters for same species. The average plasticity indexes of leaf morphological and biomass-distributed and anatomical parameters were accordant with plants’ light-requirement approximately: those light-demanding plants and slight-shade-tolerant plants had bigger plasticity indexes than deep-shade-tolerant plants. But this regular wasn’t observed in physiological plasticity indexes for most plants, though the average leaf plasticity indexes of leaf morphological and biomass-distributed, photosynthetic characteristics parameters was greater than the anatomical characteristics parameters. The distribution patterns characteristics: Oppositely to the deep-shade-tolerant specie Acer laxiflorum Pax., the density of light-demanding species Picea asperata Mast. and Vicia unijuga A. Br. in gaps was bigger than under close canopy. Each of the other species has the approximately density in two different environment. The spatial patterns of seven species were aggregated distribution in two environments, but the trend of aggregation of population under close canopy was decrease from in gaps. A few species such as Viburnum betulifoium Batal., Berberis dasystachya Maxim., Ribes glaciale Wall. and Berchemia flavescens Brongn. were aggregated distribution in gaps while random distribution under close canopy. It was shown that the difference between two light environments could affect the distribution pattern of plant population, and the effect didn’t relate with the light-requirement or plasticity indexes of species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在人类活动导致全球变暖的前提下,由于全球气温的升高,地表水分加速向空中蒸发。从20世纪70年代至今,地球上严重干旱地区的面积几乎扩大了一倍。这一增长的一半可归因于气温升高而不是降雨量下降,因为实际上同期全球平均降水量还略有增长。干旱对陆地植物和农林生态系统产生深远影响,并已成为全球变化研究的一个重要方面。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地、人工林下和林窗环境作为目前该区人工造林和森林更新的重要生境,其截然不同的光环境对亚高山针叶林更新和森林动态有非常重要的影响。凋落物产生的化感物质可通过影响种子萌发和早期幼苗的定居而影响种群的建立和更新,而人工林和自然林物种以及更新速度的差异性也都受凋落物的影响。 云杉是川西亚高山针叶林群落的重要树种之一,在维持亚高山森林的景观格局和区域生态安全方面具有十分重要的作用,其自然更新能力及其影响机制一直是研究的热点问题。本试验以云杉种子和2年生幼苗为研究对象,从萌发、根尖形态、幼苗生长、光合作用、渗透调节和抗氧化能力等方面研究了不同光环境下水分亏缺和凋落物水浸液对云杉种子和幼苗生长的影响。旨在从更新的角度探讨亚高山针叶林自然更新的过程,其研究成果可在一定程度上为川西亚高山针叶林更新提供科学依据,同时也可为林业生产管理提供科学指导。主要研究结论如下: 水分亏缺在生长形态、光合作用、抗氧化能力、活性氧化对云杉幼苗都有显著影响。总体表现为,水分亏缺导致了云杉幼苗的高度、地径、单株总生物量降低,增加了地下部分的生长;水分亏缺显著降低了云杉叶片中相对含水量、光合色素、叶氮含量,净光合速率和最大量子产量(Fv/Fm),提高了幼苗叶片中膜脂过氧化产物(MDA)的含量;水分亏缺提高了幼苗叶片中过氧化氢(H2O2)含量,超氧荫离子(O2-)生成速率以及脯氨酸和抗氧化系统的活性(ASA, SOD, CAT, POD, APX和GR)。从这些结果可知,植物在遭受水分亏缺导致的伤害时,其自身会形成防御策略,并通过改变形态和生理方面的特性以减轻害。但是,这种自我保护机制依然不能抵抗严重水分亏缺对植物的伤害。 模拟林下低光照条件显著增加单株植物的地上部分生长,尤其是其叶片的比叶面积(叶面积/叶干重),同时其光合色素含量和叶片相对含水量也显著增加,这些改变直接导致植株光合速率和生物量的增加。同时,与高光照水平相比,低光照幼苗的膜脂过氧化产物(MDA)和活性氧物质均较低,显示出低光照比高光照水平对植物的更低的氧化伤害。尽管低光照也导致大部分抗氧化酶活性降低,但这正显示出植物遭受低的氧化伤害,更印证了前面的结论。 凋落物水浸液影响了云杉种子的萌发和根系的生长,更在形态、光合作用、抗氧化能力、活性氧物质以及叶氮水平上显著影响了云杉幼苗,其中,以人工纯林凋落物的影响更有强烈。具体表现在,种子萌发速率和萌发种子幼根的长度表现为对照>自然林处理>人工纯林;凋落物水浸液抑制种子分生区和伸长区的生长,人工林处理更降低了根毛区的生长,使根吸水分和养分困难。对2年生幼苗的影响主要表现在叶绿素含量、光合速率以及叶氮含量的降低;膜脂过氧化产物、活性氧物质和抗氧化酶系统的显著增加。同样的,人工纯林处理对云杉幼苗的影响显著于自然林处理。 在自然生态系统中,由于全球变暖气温升高导致的水分亏缺和森林凋落物都存在森林的砍伐迹地,林窗和林下环境中。我们的研究表明,与迹地或林窗强光照比较,林下的低光照环境由于为植物的生长营造了较为湿润的微环境,因此水分亏缺在林下对云杉幼苗造成的影响微弱。这可以从植物的形态、光合速率以及生物量积累,过氧化伤害和抗氧化酶系统表现出来。另一方面,凋落物水浸液在模拟林下低光照环境对植物的伤害也微弱于强光照环境,这与强光照环境高的水分散失导致环境水分亏缺有关;而人工纯林处理对云杉幼苗的伤害比对照和自然林处理显示出强烈的抑制作用。 Under the pre-condition of global warming resulted from intensive human activities, water in the earth’s surface rapidly evaporates due to the increase of global air temperature. From 1970s up to now, the area of serious drought in the world is almost twice as ever. This increase might be due to the increasing air temperature and not decreasing rainfall because global average rainfall in the corresponding period slightly is incremental. Drought will have profound impacts on terrestrial and agriculture-forest system and has also become the important issue of global change research. The subalpine coniferous forests in the eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying the effects of global warming on terrestrial ecosystems. The light environment significantly differs among cutting blanks, forest gap and understory, which is particularly important for plant regeneration and forest dynamics in the subalpine coniferous forests. Picea asperata is one of the keystone species of subalpine coniferouis forests in western China, and it is very important in preserving landscape structure and regional ecological security of subalpine forests. The natural regeneration capacities and influence mechanism of Picea asperata are always the hot topics. In the present study, the short-term effects of two light levels (100% of full sunlight and 15% of full sunlight), two watering regimes (100% of field capacity and 30% of field capacity), two litter aqueous extracts (primitive forest and plantation aqueous extracts) on the seed germination, early growth and physiological traits of Picea asperata were determined in the laboratory and natural greenhouse. The present study was undertaken so as to give a better understanding of the regeneration progress affected by water deficit, low light and litter aqueous extracts. Our results could provide insights into the effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientific direction for the forest production and management. Water deficit had significant effects on growth, morphological, physiological and biochemical traits of Picea asperata seedlings. Water deficit resulted in the decrease in height, basal diameter, total biomass and increase in under-ground development; water deficit significantly reduced the needle relative water content, photosynthetic pigments, needle nitrogen concentration, net photosynthetic rate and the maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA) in Picea asperata seedlings; water deficit also increased the rate of superoxide radical (O2-) production, hydrogen peroxide (H2O2) content, free proline content and the activities of antioxidant systems (ASA, SOD, POD, CAT, APX and GR) in Picea asperata seedlings. These results indicated that some protective mechanism was formed when plants suffered from drought stress, but the protection could not counteract the harm resulting from the serious drought stress on them. Low light in the understory significantly increased seedling above-ground development, especially the species leaf area (SLA), and photosynthetic pigments and relative needle content. These changes resulted in the increase in net photosynthetic rate and total biomass. Moreover, the lower MDA content and active oxygen species (AOS) (H2O2 and O2-) in low light seedlings suggested that low light had weaker oxidative damage as compared to high light. Lower antioxidant enzymes activities in low light seedlings indicated the weaker oxidative damage on Picea asperata seedlings than high light seedlings, which was correlative with the changes in MDA and AOS. Litter aqueous extracts affected seed germination and root system of Picea asperata seedlings. Significant changes in growth, photosynthesis, antioxidant activities, active oxygen species and leaf nitrogen concentration were also found in Picea asperata seedlings, and plantation treatment showed the stronger effects on these traits than those in control and primitive forest treatment. The present results indicated that seed germination and radicle length parameters in control were superior to those in primitive forest treatment, and those of primitive forest treatment were superior to plantation treatment; litter aqueous extracts inhibited the meristematic and elongation zone, and plantation treatment caused a decrease in root hairs so as to be difficult in absorbing water and nutrient in root system. On the other hand, litter aqueous extracts significantly decreased chlorophyll content, net photosynthetic rate and leaf nitrogen concentration of Picea asperata seedlings; MDA, AOS and antioxidant system activities were significantly increased in Picea asperata seedlings. Similarly, plantation treatment had more significant effect on Picea asperata seedlings as compared to primitive forest treatment. In the nature ecosystem, water deficit resulted from elevating air temperature and litter aqueous extract may probably coexist in the cutting blank, forest gap and understory. Our present study showed that water deficit had weaker effects on low light seedlings in the understory as compared to high light seedlings in the cutting blank and forest gap. The fact was confirmed from seedlings growth, gas exchange and biomass accumulation, peroxidation and antioxidant systems. This might be due to that low light-reduced leaf and air temperatures, vapour-pressure deficit, and the oxidative stresses can aggravate the impact of drought under higher light. On the other hand, litter aqueous extracts in the low light had weaker effects on the Picea asperata seedlings than those at high light level, which might be correlative to the water evapotranspiration under high light. Moreover, plantation litter aqueous extracts showed stronger inhibition for seed germination and seedling growth than control and primitive forest treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

川西亚高山针叶林是四川森林的主体,是长江上游重要的生态屏障。云杉作为亚高山针叶林人工更新的主要树种,已经在该地区形成了大面积的人工纯林。目前,许多云杉人工林分已经进入更新成熟龄,而这些人工林的持续更新却成为日益凸现的问题。探讨这些云杉人工林的自我更新潜力及云杉种子种群更新特点,可为培育后续森林资源提供科学依据。 本文以川西米亚罗亚高山60a云杉人工林为研究对象,并以该区域内相对稳定的植被群落——天然林为对照,采用种子收集器、土壤种子库筛选、室内外种子萌发实验及野外幼苗调查等方法,从异质性微生境的角度研究了种子雨下落之后,不同微生境对种子库、种子萌发、幼苗建立及分布这一前期更新过程的影响,得出如下结果: 1、通过对川西亚高山60a云杉人工林和天然林6年内种子雨雨量、形态特征、散步动态等的持续观测和综合比较可以发现,云杉林结实特点由于林木自身的特征存在着巨大的变动,2002年和2006年两个种子结实大年内,60a人工林种子雨强度分别达到1088.2 ± 52.3粒/m2和704.3 ± 48.9粒/m2,远大于天然林579.9 ± 28.9粒/m2 和507.5± 30.7粒/m2;且云杉林结实质量优于天然林。60a人工林结实量大,种子质量也最好,相对天然林来说对种群的天然更新以及群落的演替都有最大的贡献潜力。应该说,在川西亚高山云杉人工林的天然更新过程中,种源不是影响天然更新的因素。在种子结实大年里,达到更新成熟的云杉人工林有着优于该地区相对稳定植被群落——天然林的种源优势。至少在种子结实大年,种子供应不是该区域人工林天然更新的限制因子。 2、相对于天然林种子库,人工林种子库在种子萌发前能够有较多的有活力种子。虽然这其中有种子雨输入量有差别的因素存在,但两种林分种子库对种子的保存率的不同才是造成这种差异的主要因素。在人工林中,不同地被类型形成的微生境显著地影响了种子库中种子的密度、垂直分布。有地被物存在的微生境能够将种子雨的大部分截留在地被层中,成为幼苗出现的主要场所;同时不同的地被物对种子的保存情况存在显著的差异,苔藓和凋落物层能都较好地保持其中的种子,到种子萌发前,这两种种子库类型能分别为天然更新提供366.1粒/m2和302粒/m2的有效种子。从这点来看,林下地被物上的种子库能够为天然更新萌发阶段提供数量可观的物质基础。 3、种子的萌发和幼苗的定居是天然更新过程中种子库向幼苗库转化的关键环节。总的说来,米亚罗人工林区60a云杉人工林种子向幼苗的转化率十分低下,凋落物、苔藓、草本、裸地四种主要地被物以及天然林内种子/幼苗的转化率分别仅为2.22%、2.14%、0.57%、0.67%、1.05%。这种低的转化率成为云杉林天然更新的限制性因子。但在现有更新条件下,微生境对这一环节仍然显示出十分显著的影响,表现为凋落物和苔藓对现有更新的新幼苗的保存率高于其它类型及天然林。苔藓和凋落物在种子萌发,幼苗保存,以及幼苗分布上都要优于其它地被物类型;另外,微地形对天然更新过程的影响也很显著,凹立地上更适宜于种子的汇集、萌发和定居。 Subalpine coniferous forests dominate most parts of the forested areas in western Sichuan, and they are important ecological barriers in the upper reaches of the Yangtze River. Picea asperata is one of the keystone spruce species for re-afforestation after felling of the natural forests and there have been a total of ca. 13 000 ha of plantations dominate by this species established. Nowadays, many P. asperata plantations have reached reproductive maturity. However, continued regeneration becomes to an important problem in these plantations. Understanding their self-regeneration potential and the regeneration characteristics of seed populations in spruce plantations of these plantations can have some insights on the management of these plantations and the establishment of following forest resources. A subalpine 60a P. asperata plantation distributed in Miyaluo artificial forest area was studied in this paper, at the same time. Synchronously, a 150a natural spruce forest was studied as comparison. Using seed collecting traps, sieving method for soil seed bank, seed germination experiments and seedling investigations in the field, the effects of heterogeneous microsites on early natural regeneration processes after seed rain were studied, which included seed banks, seed germination, seedling establishment and distribution. The main results are as follows. 1. Through a 6-year long term investigation of seed rain intensities, characteristic, dispersal dynamics of 60a P. asperata plantation, we could concluded that the seed setting properties of 60a P. asperata plantation have a great variation for the characteristics trees. In the mast seed year of 2002 and 2006, the seed rain intensities of plantation was 1088.2 ± 52.3 seeds/m2 and 704.3 ± 48.9 seeds/m2 respectively, which were much greater than that of natural spruce forest (579.9 ± 28.9 seeds/m2 in 2002, and 507.5± 30.7 seeds/m2 in 2006). Furthermore, the quality of seed rain in P. asperata plantation was better than that of natural spruce forest. Contrasting with natural spruce forest, 60a P. asperata plantation has a greater potential on natural regeneration of P. asperata population and succession of community for the reason of greater seed rain intensities and better seed quality. We can confirm that seed source was not a limiting factor which influences the natural regeneration progress of P. asperata population distributed in subalpine mountain zone, at least in the mast seed year. 2. Contrasting with natural spruce forest, P. asperata population had more viable seeds in seed bank before the germination. Although the difference of seed rain intensities of two forests has effect on this phenomenon, the difference of seed conservation ability in two forests was the main factor. In the P. asperata plantation, the seed densities and seed vertical distribution pattern were significant effected by the microsites, which posed by different ground cover types. In other word, Microsite with ground covers can obstruct most seeds and keep them in ground cover layer from seed rain, and these ground covers would be the main site for seed occurrence. There was a significant difference about seeds conservation ability among these ground covers. Litter and moss could better conserve P. asperata seeds which distributed in this two covers. Seed banks exist in litter and moss ground cover types could respectively provide 302seed/m2 and 366.1seed/m2 for natural regeneration before the seed germination. From this point of view, we could conclude that ground covers can ensure considerable numbers of seeds for the germination process. 3. Seed germination and seed establishment are key steps that the seeds invert to seedlings in natural generation process. In sum, the seed/seeding transform rate in 60a P. asperata plantation distributed in Miyaluo artificial forest area is very low. the seed/seeding transform rates in litter, moss, herb, soil surface and natural spruce forest were 2.22%、2.14%、0.57%、0.67%、1.05%, respectively. The low transform rate become to a limiting factor of P. asperata natural regeneration process. However, under the existing conditions of natural regeneration, microsit still had significant effect on this transform. The states of Seed germination, new seedling conservation, and older seedling distribution in litter and moss were better than in any other ground cover type or natural spruce forest. In addition, the micro-relief has significant effect on natural regeneration process. Concave site was more suitable for seed collection, seed germination and seedling distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研究人工林凋落叶分解对土壤性质的影响,为防止土壤退化、增加土壤肥力提供理论指导。【方法】采集四川岷江流域上游的4种(连香树(Cercidiphyllum japonicum)、云南松(Pinus yunnanensis)、糙皮桦(Betula1 utilis)和云杉(Picea asperata))林木凋落叶及林地土壤样品,通过对当年凋落叶进行240 d室内分解培养试验,探讨不同凋落叶在分解过程中对土壤性质的影响。【结果】云杉和云南松凋落叶分解使土壤pH值降低,糙皮桦和连香树凋落叶分解使土壤pH值增加;4种凋落叶分解过程中,土壤有机质和全氮含量,土壤微生物量C、N以及4种土壤酶(蔗糖酶、过氧化氢酶、脲酶和蛋白酶)活性均有所增加。【结论】土壤有机质、全N、微生物量、酶活性增加的幅度与凋落叶分解速率及养分释放率有密切关系,凋落叶分解的越快,土壤状况改善的越明显。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

大气臭氧的损耗导致了地球表面具有生物学效应的紫外线-B(UV-B)辐射增强。同时,大气成分变化中除了UV-B辐射增强外,氮沉降是一个新近出现而又令人担忧的环境问题,其来源和分布正在迅速扩展到全球范围,并不断向陆地和水生生态系统沉降。本试验在四川省境内的中国科学院茂县生态站内进行,以云山、冷杉、色木槭和红椋子幼苗为模式植物,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究了青藏高原东缘4种树苗对全球变化-增强UV-B辐射和氮供应(氮沉降)的响应。该试验为室外盆栽试验,包括四个处理:(1)大气UV-B辐射+无额外的氮供应(C);(2)大气UV-B辐射+额外的氮供应(N);(3)增强UV-B辐射+无额外的氮供应(UV-B);(4)增强UV-B辐射+额外的氮供应(UV-B+N)。其目的:一方面有助于丰富我国对全球变化及区域响应研究的全面认识,进一步完善在全球气候变化条件下臭氧层削减和氮沉降对陆地生态系统影响的内容;另一方面,在一定程度上有助于我们更好的理解在全球变化下森林更新的早期过程。具体结果如下: 增强的UV-B辐射在生长形态、光合、抗氧化能力、活性氧和矿质营养方面对4种幼苗都有显著的影响。UV-B辐射增强对幼苗的影响不仅与物种有关,而且,还与氮营养水平相关。总体表现为,高的UV-B辐射导致了色木槭和红椋子幼苗叶片的皱缩和卷曲,并降低了色木槭幼苗的叶片数和叶重,在额外的氮供应下,云杉、冷杉和红椋子的叶重也显著地降低了;色木槭和红椋子幼苗叶片的解剖结构受到了增强的UV-B辐射的影响,增强的UV-B辐射显著地降低了色木槭叶片的栅栏组织厚度,提高了红椋子叶片的厚度;增强的UV-B辐射显著地降低了4种幼苗的单株总生物量、植物地下部分的生长、总叶绿素含量 [Chl (a + b)]、净光合速率和最大量子产量(Fv/Fm),提高了4种幼苗叶片的膜脂过氧化(MDA含量),改变了植物体不同器官中的矿质元素含量;增强的UV-B辐射提高了冷杉、色木槭和红椋子叶片中的过氧化氢含量(H2O2)、超氧负离子(O2-)生成速率,在额外的氮供应下,云杉叶片中的活性氧含量也显著地提高了;在无额外的氮供应条件下,增强的UV-B辐射显著地提高了4种幼苗叶片中的UV-B吸收物质、脯氨酸含量和抗氧化酶的活性(SOD、POD、CAT、GR和APX)。在额外的氮供应条件下,UV-B辐射的增强却显著地降低了冷杉叶片中脯氨酸含量和红椋子叶片中UV-B吸收物质含量,但是,在4种幼苗叶片中,5种抗氧化酶的活性对UV-B辐射的增强没有明显的规律性,增强的UV-B辐射显著地提高了云杉叶片中的POD、SOD和GR的活性,提高了冷杉叶片中的POD和GR活性,提高了色木槭叶片中的POD、SOD和CAT活性和红椋子幼苗叶片中的POD和SOD活性。从这些结果可知,植物在遭受高的UV-B辐射导致的过氧化胁迫时,植物体内形成了一定的保护机制,但是,这种保护不能抵抗高的UV-B辐射对植物的伤害。 额外的氮供应在生长形态、光合、抗氧化能力、活性氧和矿质营养方面对4种幼苗都有一定的影响,不同幼苗对额外的氮供应响应不同,并且受到UV-B辐射水平的影响。在当地现有的UV-B辐射水平下,额外的氮供应显著地提高了幼苗的单株总生物量、植物地下部分的生长、Chl (a + b)、净光合速率(红椋子除外)、UV-B吸收物质(冷杉除外)、脯氨酸含量(红椋子除外)和部分抗氧化酶的活性,降低了H2O2的含量、O2-的生成速率和MDA含量(红椋子除外),改变了植物体内部分矿质元素含量,显著地提高了云杉和冷杉叶片中的Fv/Fm。这些指标总体表明,在当地现有大气UV-B辐射水平下,额外的氮供应对植物的生长和发育是有利的。在增强的UV-B辐射水平下,4种幼苗的生长形态和光合大部分指标都没有受到额外氮供应的影响,额外的氮供应提高了红椋子幼苗的单株总生物量和Chl (a + b)含量,提高了冷杉和色木槭叶片中的活性氧含量和MDA含量,却降低了红椋子叶片中的活性氧含量;额外的氮供应也提高了云杉、色木槭和红椋子叶片中UV-B吸收物质和脯氨酸含量,降低了冷杉叶片中UV-B吸收物质和脯氨酸含量;在抗氧化酶活性方面,额外的氮供应降低了云杉、冷杉叶片中5种抗氧化酶的活性和红椋子叶片中POD和GR的活性,提高了色木槭叶片中的POD和SOD的活性;4种幼苗植物体内的矿质元素含量对额外的氮供应没有显著的规律性。从这些结果可知,在高的UV-B辐射下,额外的氮供应提高了云杉、冷杉和色木槭幼苗对高的UV-B辐射的敏感性,然而,额外的氮供应却促进了红椋子幼苗的生长,原因可能是,在高的UV-B辐射下,额外的氮供应增加了红椋子叶片的厚度、叶重和叶片数,降低了叶片中活性氧含量的结果。表明在高的UV-B辐射水平下,额外的氮供应降低了红椋子幼苗对高的UV-B辐射的敏感性。 在全球变化的趋势下,UV-B辐射增强和氮沉降可能同时存在,我们的研究表明,与大气UV-B辐射+无额外的氮供应处理相比,增强UV-B辐射+额外的氮供应处理显著地降低了幼苗的单株总生物量(红椋子除外)、Chl (a + b)、净光合速率、Fv/Fm(冷杉除外)和MDA含量(红椋子除外),提高了活性氧含量 (云杉除外)、UV-B紫外吸收物质含量(冷杉除外)、脯氨酸含量和部分抗氧化酶的活性,改变了植物体不同器官中的矿质元素含量。结果表明,在当地现有条件下,全球变化(UV-B辐射增强和氮沉降)对云杉、冷杉和色木槭幼苗的生长是不利,尽管植物体内一些抗氧化性指标提高了,然而,却对红椋子幼苗的单株总生物量的累积没有显著的影响。 The depletion of the ozone led to the increase of ultraviolet-B (UV-B) with biological effects in the earth’s surface. At the same time, except for enhanced UV-B radiation, nitrogen deposition was an anxious environmental problem at present, rapidly expanding to the global scope and continuously depositing to land and aquatic ecosystem. The experiment was conducted in Maoxian Ecological Station of Chinese Academy of Sciences, Sichuan province, China. Picea asperata, Abies faxoniana, Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings were selected as model plants to assess the effects of enhanced UV-B radiation and supplemental nitrogen supply on growth, morphological, photosynthesis, antioxidant and mineral nutrient traits of 4 species seedlings in east Qinghai-Tibetan Plateau. The experiment was potted outdoor, including 4 treatments: (1) ambient UV-B without supplemental nitrogen (control, C); (2) ambient UV-B with supplemental nitrogen (N); (3) enhanced UV-B without supplemental nitrogen (UV-B); (4) enhanced UV-B with supplemental nitrogen (UV-B+N). One hand, it was helpful for enriching our country to comprehensive understanding of the researches in the global change and the region response, further perfecting the effects of the depleted ozone layer and nitrogen deposition on land ecosystem under the global change; the other hand, it was favorable for us to better understanding of the early process of forest renews under the global change. The results were as follows: Enhanced UV-B radiation had significant effects on 4 species seedlings in growth, morphological, photosynthesis, antioxidant and mineral nutrient traits of 4 species seedlings. The effects of enhanced UV-B on plants were not only related with species, but also related with nitrogen nutrient level. Generally, the increase of UV-B radiation led to the shrinkage and curl of leaves in Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, and reduced the number of leaf and leaf weight of Acer mono Maxim seedlings, under supplemental nitrogen supply, leaf weight of Picea asperata, Abies faxoniana and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings significantly also reduced; the anatomical features of leaf in Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings affected by enhanced UV-B radiation, the increase of UV-B radiation markedly reduced the palisade tissue thickness of Acer mono Maxim leaf and enhanced the leaf thickness of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings; the enhanced UV-B radiation significantly reduced total biomass per plant of 4 species seedlings, the growth of the underground parts, Chl (a + b), net photosynthetic rate and maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA content) and changed the content of mineral elements in different parts of plants; the enhanced UV-B radiation also increased the rate of superoxide radical (O2-) production and hydrogen peroxide (H2O2) content in leaves of Abies faxoniana, Acer mono Maxim, Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, under supplemental nitrogen supply, the reactive oxygen species in leaves of Picea asperata seedlings also significantly increased by enhanced UV-B radiation; under without supplemental nitrogen supply, enhanced UV-B radiation evidently induced an increase in UV-B absorbing compounds, proline content and the activities of antioxidant enzymes (SOD, POD, CAT, GR and APX) of leaves in 4 species seedlings. Under supplemental nitrogen supply, enhanced UV-B radiation induced a decrease in proline content of leaves in Abies faxoniana seedlings and UV-B absorbing compounds of leaves in Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings, but, there were no obvious rules in the activities of five antioxidant enzymes of 4 species seedling leaves to enhanced UV-B radiation, enhanced UV-B radiation significantly increased the activities of POD, SOD and GR in Picea asperata leaves, the activities of POD and GR in Abies faxoniana leaves and the activities of POD, SOD and CAT in Acer mono Maxim leaves. The results indicated that some protective mechanism was formed when plants were exposed to enhanced UV-B radiation, but the protection could not counteract the harm of high UV-B radiation on plants. Supplemental nitrogen supply had some effects on 4 species seedlings in growth, morphological, photosynthesis, antioxidant and mineral nutrient traits. The response of 4 species seedlings was different to supplemental nitrogen supply, and was affected by UV-B levels. Under local ambient UV-B radiation, supplemental nitrogen supply significantly increased the total biomass per plant, the growth of underground parts, Chl (a + b), net photosynthetic rate (except for Acer mono Maxim seedlings), UV-B absorbing compounds (except for Abies faxoniana seedlings), proline content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings) and the activities of some antioxidant enzymes, and reduced H2O2 content, the rate of O2- production and MDA content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings) and changed the content of mineral elemental in different parts; supplemental nitrogen supply also evidently increased Fv/Fm in Picea asperata and Abies faxoniana seedlings. These results indicated that supplemental nitrogen supply was favorable for the growth of plants under local ambient UV-B radiation. Under enhanced UV-B radiation, mostly parameters in growth and morphology of 4 species seedlings were not affected by supplemental nitrogen supply. Supplemental nitrogen supply increased the total biomass per plant and Chl (a + b) of Swida hemsleyi (Schneid. et Wanger.) Sojak seedling, increased the reactive oxygen species and MDA content in Abies faxoniana and Acer mono Maxim leaves, and reduced the reactive oxygen species in Swida hemsleyi (Schneid. et Wanger.) Sojak leaves; supplemental nitrogen supply also increased UV-B absorbing compounds and proline content in Picea asperata, Acer mono Maxim and Swida hemsleyi (Schneid. et Wanger.) Sojak leaves, decreased UV-B absorbing compounds and proline content in Abies faxoniana leaves; in the activities of antioxidant enzymes, supplemental nitrogen supply significantly reduced the activities of antioxidant enzymes in Picea asperata and Abies faxoniana leaves and the activities of POD and GR in Swida hemsleyi (Schneid. et Wanger.) Sojak leaves, and increased the activities of POD and SOD in Acer mono Maxim leaves; the content of mineral elements in 4 species seedlings was no significantly rule to supplemental nitrogen supply. We knew from the results, under enhanced UV-B radiation, supplemental nitrogen supply made Picea asperata, Acer faxoniana and Acer mono Maxim seedlings more sensitivity to enhanced UV-B radiation, however, accelerated the growth of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings. The reason was probably that supplemental nitrogen supply increased the leaf thickness, leaf weight and leaf number, reduced the reactive oxygen content of leaf in Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings grown under high UV-B radiation. This showed that supplemental nitrogen supply reduced the sensitivity of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings to high UV-B radiation. Under the tendency of the global change, enhanced UV-B radiation and nitrogen deposition may probably coexist. The results showed, compared with the treatment of ambient UV-B radiation without supplemental nitrogen supply, the treatment of enhanced UV-B radiation with supplemental nitrogen supply significantly reduced the total biomass per plants (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings), Chl (a + b), net photosynthetic rate, Fv/Fm and MDA content (except for Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings), and increased reactive oxygen content (except for Picea asperata seedlings), UV-B absorbing compounds (except for Abies faxoniana seedlings), proline content and part antioxidant enzymes, and changed the content of mineral elements of different parts. The results indicated that the global change (enhanced UV-B and nitrogen deposition) were not favorable for the growth of plants under local ambient UV-B radiation and nitrogen nutrient level,, though increased some antioxidant indexes, however, the treatment of enhanced UV-B with supplement nitrogen supply did not significantly affect on the biomass accumulation of Swida hemsleyi (Schneid. et Wanger.) Sojak seedlings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在青藏高原东部的亚高山针叶林区,如何尽快恢复这一生态脆弱地区的植被,改变生态环境恶化的趋势,是一个十分重要的课题。光一直被认为是植物种间相互替代,尤其是森林演替过程中植物相互替代或植被恢复中的关键环境要素之一。植物能否适应林冠下或林窗中异质的、或多变的光照条件,对其在林中的生存、分布、更新以及森林动态都是非常重要的。 本文以青藏高原东部亚高山针叶林的主要森林类型——岷江冷杉林群落的几种树苗为研究对象,采用实验生态学、生理及生物化学等方法,通过模拟针叶林不同大小林窗内光照强度的变化,在中国科学院茂县生态站内采用遮荫处理设置6个光照梯度(100、55、40、25、15与7%全光照),来研究具有不同喜光特性的植物对光强的响应与适应机制,其研究结果可为揭示亚高山针叶林的演替规律、以及人工林下幼苗的存活与定居提供科学依据,也能为苗木的生产与管理提供科学指导,尤其是对针阔树种在不同光强下的响应与适应的比较研究,能为如何将阔叶树种整合到人工针叶林中提供新的思路。 光强对植物生长的影响 光强对植物的生长具有重要作用,不同植物在各自适宜的光强梯度下才能生长良好。通过一个野外盆栽实验,来研究不同光强对植物生长的影响(第三章)。主要研究结果如下,低光强下植物株高/茎生物量增加,说明植物会将生物量更多用于高生长,以便有效地拦截光资源;在强光下,植物将生物量更多地向根部分配,使得植物在强光下能够吸收更多的水分,而避免干旱胁迫。 在第一个生长季节,以相对生长速率(RGR)表示,红桦和青榨槭在100%全光照下RGR最大,粗枝云杉在55%最大,岷江冷杉在25-40%下较好;然而,在第二个生长季节,2种阔叶树的相对生长速率(RGR)的适宜光强则变为25-55%,云杉为55-100%,而冷杉为25-100%。可见,从第一年到第二年,2种阔叶树苗更适宜在部分荫蔽的条件下生长;而2种针叶树苗对光的需求则逐渐增加,这可能是增加对根生物量相对投资的结果,因为以这种方式,强光下生长的针叶树幼苗更能保持其内部水分平衡,其生长不会因干旱胁迫而受到严重影响。另外,严重遮荫会引起冷杉幼苗死亡。 植物对光强的生理适应 植物可以通过自身形态和生理特征的调整,来发展不同的光能利用策略从而能够在林中共存。通过一个野外盆栽实验,研究了不同光强下生长的几种树苗的生理特征(第四章)对不同光强的响应与适应。结果显示:强光下,粗枝云杉和红桦的光合能力增加,而岷江冷杉和青榨槭在中度遮荫(25-55%)的条件下光合能力最大。植物叶氮和叶绿素含量增高,而光补偿点和暗呼吸速率降低,这些都是植物对低光环境的适应性反应;而强光下植物叶片和栅栏组织变厚,是对强光的一种保护性反应。 植物对光的可塑性反应 不同植物会表现出对光适应有利的生理和形态可塑性反应。本文对第三章、第四章的实验数据进行可塑性指数分析,来研究植物对光强的表型可塑性反应(第五章)。结果显示,生理特征调整是植物对不同光环境的主要适应途径。红桦和青榨槭的可塑性指数平均值要大于粗枝云杉和岷江冷杉,充分表明这2种阔叶树在生理和形态上较强的可塑性更有利于对光环境的适应,而具有比耐荫树种更强的适应能力。另外,2种针叶树相比,云杉的适应性更强。本研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。 植物的光抑制与防御 当植物叶片吸收了过多光能,会发生光抑制现象。植物对光抑制的敏感性及防御能力对其生长具有重要意义。本文通过两个野外盆栽实验,研究了生长在强光下(第六章)和变化光强下(第八章)植物的光抑制现象及其防御策略。结果表明,在强光下或从遮荫状态转入强光下,植物都会发生光抑制,其对光抑制的敏感性与植物的耐荫性(或喜光)和演替状态有密切联系。长期生长在强光下的植物受到光抑制是可恢复的,而当处于荫蔽环境的植物突然暴露于强光下时,受到的光抑制不能完全恢复,可能是(部分)光合机构受到破坏的缘故。粗枝云杉和青榨槭防御光抑制伤害的能力较强,热耗散是其防御光抑制的主要途径。长期的强光作用能使岷江冷杉和红桦发生严重光抑制,甚至光伤害,而红桦能够通过“凋落老叶,萌发新叶”的途径来适应新的强光环境。 How to restore the vegetation of subalpine coniferous forest in eastern Qinghai-Tibet Plateau, and change the trend of ecological deterioration is a very important issue. Acclimation of tree seedlings to different and varing light environment affects to a great extent the successful regeneration and establishment of subalpine coniferous forests in southwestern China’s montane forest areas, because the ability to respond to such changing resource are commonly assumed to be critical to plant success, and have a growth advantage than others. In this paper, several species seedlings in Abies faxoniana community were chosed to study the response and adaptation to light intensity and the interspecific differences of adaptability in six shaded sheds (100, 55, 40, 25, 15 and 7% of full sunlight) in the Maoxian Ecological Station of Chinese Academy of Sciences. Our results could provide a strong theoretical evidence for understanding the forest succession laws of subalpine coniferous forests, and the survival and settlement of seedlings under plantations, and provide scientific direction for the production and management of seedlings, especially the comparative studies of the acclimation to light between the conifer and broadleaf trees could provide new ideas for how to integrate the broad-leaved trees into the artificial coniferous forest. Growth under different light intensity Light intensity plays an important role on plant growth. One field experiments was conducted to study the growth of tree seedlings of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii under different light intensities. The results showed that plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources, while biomass greater allocation to the roots, could make plants under high light environment absorb more water, and avoid drought stress. During the first growing season, the relative growth rates (RGRs) of Betula albo-sinensis and Acer davidii had the greatest values under the 100% of full light, for 55% of Picea asperata, and for 25-40% of Abies faxoniana. However, in the second growing season the the relative growth rates of the two broad-leaved trees changed and were appropriate for 25-55% of full light, for 55-100% of spruce, and for 25-100% of fir. Thus, from the first year to the second year, two broad-leaved seedlings maybe more suitable to partly shading environment, and two coniferous seedlings would have an increase in light demand, which may be an increased root biomass investment. Because in this way, seedlings grown under high light could better maintain their internal water balance, and thus its growth would not be seriously affected by drought stress. In addition, serious shading would cause fir seedlings to die. Acclimation of physiology to light Plants could coexist in forest ecosystem by forming different strategies of light use. One field experiments was conducted to study the acclimation of tree seedlings to different light intensity of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii. The results showed that the photosynthetic capacity of Picea asperata and Betula albo-sinensis exhibited a general tendency of increase with more light availability; but for Abies faxoniana and Acer davidii seedlings, their highest values of the same parameters were found under intermediate light regime (i.e. 25-55% of PFD relative to full sunlight). Plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources. Leaf nitrogen and chlorophyll content increased, while dark respiration rate and light compensation points decreased, all of which were adaptive response to the low light environment. On the contrary, plants under high light environment had the thicken leaves and palisade tissue, which was a protective response to high light. Phenotypic plasticity to light Phenotypic plasticity can be exhibited in morphological and physiological processes. Physiological characteristical adjustment is the main for plant adaptation to different light environment.The means of plasticity indexes for Betula albo-sinensis and Acer davidii seelings were greater than Picea asperata and Abies faxoniana, amplied that the two broad-leaved trees were much more adaptable to the environment. In addition, spruce had the higher adaptablity than fir. The findings supported the hypothesis that the ecological characteristics of the species determined the biological status and its biological habitat selection. Photoinhibition and photoprotection to light Compared with conifer, broad-leaved trees could better change leaf morphology and adjust biomass allocation to adapt to changing light environment. However, excess light can photoinhibit photosynthesis and may lead to photooxidative destruction of the photosynthetic appatus. Two field experiments were conducted to study the photoinhibition of photosynthesis. The results showed that when plants grown under high light environment or plants transferred from low to high irradiance, the four tree seedlings would undergo a period of photoinhibition. In four species, photoinhibited leaves could recover to initial photosynthetic rates when they were long-term planted under high light environment. However, when plants were suddenly exposed to high irradiance, this photoinhibition could not be reversible, may be the photosynthesis apparatus were (or partly) photooxidatively destructed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

米亚罗地区是四川西部较为典型的亚高山针叶林区域之一。为建立该地区主要针叶树种岷江冷杉、云杉、紫果云杉和红杉的年轮宽度年表资料,了解不同海拔高度岷江冷杉原始林和不同恢复过程的人工针叶林及次生混交林树木径向生长规律,结合样地调查,用生长锥钻取了树木芯样做年轮生态学分析。芯样经过标准化程序固定和打磨抛光后,用WinDENDRO图像分析系统测量年轮宽度序列,用COFECHA程序交叉定年和控制测量数据质量,用ARSTAN程序建立了4个主要针叶树种的地区年表和不同海拔高度岷江冷杉林及人工针叶林和次生混交林针叶树的样地年表。 4个主要针叶树种年轮宽度年表的平均敏感度低于0.2,而其晚材宽度年表都具相对较高的平均敏感度。早材宽度与年轮总宽度标准化年表间的相关系数均在0.9以上;晚材宽度与年轮总宽度标准化年表间的相关系数则种间差异较大,红杉的最高,岷江冷杉的最低。岷江冷杉晚材宽度与年轮总宽度的相关性从1970年以后明显下降,而其他种的相关系数则随时间变化较小。树种之间标准化年表显著正相关,而云杉与紫果云杉和红杉与岷江冷杉之间相关系数明显较高。年表序列的第1主分量表达了4个树种树木共同径向生长变化格局;第2至第4主分量分别表达了云杉属和冷杉属、常绿针叶树种和落叶针叶树种以及云杉和紫果云杉树木径向生长变化差异。 不同海拔高度的8个岷江冷杉样地年轮宽度年表序列敏感度大体上随海拔高度升高而降低。各样地早材宽度与年轮总宽度年表之间的相关系数均在0.9以上,且随海拔高度变化不大;晚材宽度与年轮总宽度之间的相关系数随海拔高度的变化较大,并有随海拔升高而降低的趋势。样地年表序列之间相关系数差异很大,高海拔样地年表间多为显著正相关;低海拔样地年表间的相关系数变化不一;高海拔和低海拔样地年表之间相关性较差,且多不显著。样地年表的第1主分量能解释年表序列总方差的37.5%,反映了不同海拔高度岷江冷杉林木共同的径向生长变化格局;第2和第3主分量分别解释总方差的24.5%和18.2%,表现出明显的高海拔和低海拔样地树木间不同的径向生长变化,除一些样地例外,它们一般与低海拔样地年表有正相关,与高海拔样地年表有负相关。在那些另外的样地,海拔以外的其他因素可能也影响了树木径向生长变化。不同海拔高度样地林木的生长抑制和生长释放频率在不同时期表现出较大的差异,表明了不同的干扰历史和林木补充时间。 人工针叶林和次生混交林各样地林木早材宽度与其年轮总宽度年表之间相关系数均高达0.9以上;晚材宽度与年轮总宽度年表之间也都显著正相关,但人工针叶林样地的明显较高。样地年表序列之间的相关关系表现为,林分起源和经营管理相似的样地年表之间的相关系数明显较高,如人工针叶林与人工针叶林尽管树种不同,但样地年表之间显著正相关,而与次生混交林样地年表间关系不显著;反之亦然。综合比较各项生长参数及不同时期的树木径向生长速率,人工针叶林树木的胸径增长至少在40年以内是优于次生混交林的同种(或不同种)针叶树的。不同样地林木生长释放和生长抑制及人工针叶林树木胸高断面积增长分析表明,除严重的人为干扰外,林分郁闭后林木密度过大是造成高频率生长抑制的主要原因,在林分发育的适当时期通过抚育间伐等措施调控林分密度,是保证林木胸高断面积在一定时期内保持较高的连年增长的关键。日本落叶松作为引进的树种,在海拔3100 m左右种植表现良好,近30年来各项生长指标均高于林龄相近的云杉人工林,因此,适当用其作为川西亚高山针叶林采伐迹地快速恢复是合理的。 Miyaluo area is one of the typical regions covered by subalpine coniferous forests in western Sichuan province of southwestern China. To develop the regional tree-ring width chronology series for the dominant conifers such as Abies faxoniana, Picea asperata, P. purpurea and Larix potaninii, and to understand the radial growth patterns of conifers in Abies faxoniana natural forest stands at different altitudes, and in coniferous plantations and natural regenerated mixed stands in their different restoring processes as well, increment cores were sampled in the field together with conventional plots investigations for dendroecological analyses. After the increment cores being prepared according to standard procedures, the ring widths (total-ring and intra-ring widths) were measured with a WinDENDRO image-analysis system, and the measured tree-ring sequences were crossdated and quality-controlled with the software COFECHA. Using the software ARSTAN, we developed tree-ring width based chronology series of the four dominant conifers, eight site-specific Abies faxoniana chronologies, and seven site-specific chronologies of conifers in coniferous plantations and natural regenerated mixed stands. Mean sensitivities for total ring width chronologies of the four sampled dominant conifers were all below 0.2, while those for the latewood width chronologies of the same species were relatively much higher. Correlation coefficients between standard earlywood and total ring width chronologies of the four conifers were all above 0.9, but those between standard latewood and total ring width chronologies exhibited differences among species, with the coefficient of Larix potaninii the highest and that of Abies faxoniana the lowest. Correlation coefficients between latewood and total ring width of A. faxoniana obviously decreased from 1920-1970 for successive 50-year segments with 10-years lag analyses, though the same for the other three species changed unnoticeably with time. Tree-ring standard chronologies among species showed significant positive correlations, with the correlation coefficients between chronologies of Picea asperata and P. purpurea, and of Larix potaninii and Abies faxoniana relatively much higher. The first principal component of tree-ring chronologies represented the common radial growth patterns of the four conifers in Miyaluo area. The second, third and fourth PCs expressed the differences in radial growth responses for the genus Picea and Abies, for the evergreen and deciduous confers, and for the two species of the genus Picea, respectively. In general, mean sensitivities of the eight Abies faxoniana site-specific tree-ring width chronologies decreased with increasing altitude. The correlation coefficients between earlywood and total ring width chronologies for all sites reached 0.9, which did not change much with altitude; but those between latewood and total ring width chronologies diversified, with a decreasing tendency from lower altitudinal sites to higher altitudinal sites. Correlation coefficients among site chronologies varied considerably, with significant positive correlations among higher site chronologies, mixed results among lower site chronologies, and poor and insignificant correlations between chronologies of higher site and lower site. The first PC, which represents 37.5% of the total variance, reflected a common radial growth response at sites of different altitudes, and it showed a tendency of explaining more variance with increasing altitude. The second and the third PCs contributed to 24.5% and 18.2% of the total variance, respectively, exhibiting distinctive differences in radial growth responses between low- and high-altitudinal sites. With some exceptions, the radial growth represented by the second and third PCs had a positive correlation with that at the low-altitudinal sites and a negative correlation with that at the high-altitudinal sites. For those exceptional sites, factors other than altitude might also play a role in affecting tree-ring growth variations. Trees in stands of different altitudes showed great differences in frequencies of growth suppressions and releases through times, suggesting different disturbance histories and periods when trees recruiting to the canopy. Correlation coefficients between earlywood and total ring width chronologies for all sites of coniferous plantations and natural regenerated mixed stands were also above 0.9; and the same between latewood width and total ring width chronologies all positively correlated, too, with the coefficients of the coniferous plantations obviously much higher. Correlations among site chronologies showed that the coefficients among sites with similar stand origin and management regimes were much higher than those among sites with different stand origin and management regimes. For example, significant positive correlations were found for chronologies among different coniferous plantations, irrespective of species differences; while insignificant correlations between chronologies of the same conifer from a coniferous plantation and a natural regenerated mixed stand, and vise versa. Integrative comparisons of different tree growth parameters and radial growth rates at different stages indicated that the diameter at breast height (DBH) increments for trees in coniferous plantations were faster than those for trees of the same (or different) species in the natural regenerated mixed stands, at least within their first 40 years of stand development. Analyses of growth releases and suppressions, and basal area increments of trees in different stands demonstrated that over-dense individuals after canopy closure was the main factor resulting in high frequencies of radial growth suppressions, with some exceptions of severe man-made disturbances. Therefore, to ensure a continuous basal area current annual increment in certain periods, tree density controlling through thinning in due time during the stand development process are necessary. It should be mentioned that, as an introduced conifer to Miyaluo area, Larix kaempferi grew quite well at altitude of ca. 3100 m after planting in 1970s. In their near 30 years of stand development, Larix kaempferi trees exhibited faster growth in various parameters than Picea asperata trees of the similar stand age did. Thus we think it reasonable to use Larix kaempferi as a fast restoring species at appropriate sites of cutting blanks of subalpine coniferous forests in western Sichuan.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为了揭示不同类型植被下土壤有机碳及其活性组分季节动态变化及其特点,探讨不同的植被恢复模式对土壤有机碳组分的影响,分析影响土壤有机碳组分变化的因素,评估土壤有机活性有机碳组分参数在植被恢复过程中土壤质量监测的可靠性,为植被恢复及低效林改造技术提供理论依据。本研究选择岷江上游大沟流域的几种人工林(云杉林、油松林、华山松林、日本落叶松林)以及次生落叶阔叶灌丛下土壤,通过剖面机械分层取样,测定土壤总有机碳(TOC)和三种活性碳组分微生物碳(SMBC)、水溶性碳(WSOC)、易氧化碳(EOC)等来反映土壤变化特点。主要结果是: 1. 土壤有机碳含量平均在15.48~25.46 g kg-1之间在5月份时含量最低,随生长季的开始,有机碳含量逐渐增加,到9月份时含量达到最大值;由于新形成的凋落物不能被迅速分解利用补充土壤碳库,而原有碳库经历一个生长季的分解利用,因此,生长季末期即11月份的含量较小;土壤微生物碳含量平均在132.78~476.73mg kg-1之间,9月份和11月份含量都比较高;水溶性碳在生长季中逐步增大,含量在51.95~77.18 mg kg-1之间,到11月份时达到最大值;土壤易氧化碳平均含量在3.74~5.79g kg-1之间,含量最低值出现在5月份,但和其他碳组分不同的是其在7月份时含量较高。 2. 土壤有机碳及其活性碳组分大小关系为:TOC>EOC >SMBC>WSOC;比值约为300:70:5:1。 3. 土壤不同层次间比较,土壤碳指标都表现为随土壤深度增加而逐渐减小, 表层积聚作用明显。 4. 对土壤总有机碳量与活性碳组分以及活性碳之间进行了相关分析表明,土壤总有机碳含量与土壤微生物量碳、水溶性碳、易氧化碳之间的相关性均达到显著水平(P<0.05),有机碳总贮量很大程度上制约着土壤活性碳组分。土壤微生物量碳、水溶性碳、易氧化碳两两之间也都存在着显著相关关系(P<0.05),并随着不同植被类型或立地条件因子发生变化而变化。 5. 土壤有机碳及其活性组分与土壤养分状况之间的相关性分析发现,随着海拔、坡向或者植被类型的改变,其林下土壤有机碳及其活性组分与土壤养分的相关性也发生较大的变化。总体而言,岷江上游地区海拔、坡向、土壤自然含水量、植被盖度、凋落物厚度、土壤全N对次生林下土壤有机碳及其组分有重要影响。而AP、AK、C/N对土壤碳变化变化影响较小。 6. 通过不同海拔、坡向以及植被类型之间的综合比较分析发现,土壤微生物碳SMBC和水溶性碳WSOC比TOC和EOC更能敏感地反映出比较敏感的指示林下土壤质量的变化。 In order to reveal seasonal dynamics of soil labile organic carbon under different secondary vegetation, to analyze effect of different vegetation restoration pattern on soil organic carbon and its fractions, and to find the factors influencing changes in soil organic carbon and its fractions, further to estimate those parameters reliability for soil quality monitoring in the process of vegetation restoration. Soils were selected from several plantations, including Picea asperata Pinus tabulaeformis, Pinus armandii and Larix kaempferi and secondary shrub in Dagou Watershed of the upper reach of Minjiang River. The measurement of TOC, SMBC,WSOC and EOC were made, because these parameters can reflect change of soil characteristics. The major results are: 1. There were the lowest soil organic carbon and its labile fractions contents in May. At the time of growth initiation, they increased gradually and reached maximum in September. After that the soil organic carbon content decreased. Because current litter couldn’t be rapidly decomposed, and supplemented into carbon pool, while intrinsic carbon pool experienced decomposition and utilization of growth season, Which led a decrease in soil organic carbon content in November. Average value was 15.48~25.46 g kg-1; average SMBC content was 132.78~476.73mg kg-1.There were higher SMBC content in September and November as compared with other times; Water soluble organic carbon content increased from 51.95 mg kg-1 in May to 77.18 mg kg-1 in November; EOC content was lowest in May y. Average value was 3.74~5.79g kg-1. Differeing from other parameters of carbon fractions, EOC content was higher in July. 2. The content of soil organic carbon and its labile carbon fractions ranked as follows:TOC>EOC >SMBC>WSO,and ratio was about 300:70:5:1. 3. Consider as soil different layers,all of the parameters decreased gradually with increasing soil depth, thus displayed a significant accumulation in the surface layer soil. 4. Correlations coefficient analysis revealed that, TOC significantly correlated with SMBC, WSOC and EOC indicating total storage of organic carbon limited soil labile carbon fractions in great extent. On the other hand, there were significant correlations between SMBC,WSOC and EOC. But these relationships changed with vegetation types and/or environmental conditions. 5. The relationships between soil organic carbon and its labile fractions and soil nutrient traits changed with altitude,slope aspect and vegetations. Therefore our results suggested that altitude,slope aspect,soil natural water content,vegetation coverage, litter thickness and soil total nitrogen play a important role change in soil organic carbon and its fractions in upper reaches of Minjiang River. While AP、AK、C/N slightly influenced soil carbon. 6. Our results, on the other hand suggested that SMBC and WSOC are more sensitive to the change of altitudes, slope aspects, vegetation types than TOC and EOC, thus two parameters may be good index reflecting change of soil quality. These results provide insights into theoretical and technological evidences for the vegetation regeneration restoration and improvement of low-quality and benefit forest in the upper reaches of Minjiang River regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20 世纪升高了0.6 ¡æ,并预测在本世纪将上升1.4-5.8 ¡æ。气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地和人工云杉林下作为目前该区人工造林和森林更新的两种重要生境,二者截然不同的光环境对亚高山针叶林不同物种更新及森林动态有非常重要的影响。 本文以青藏高原东部亚高山针叶林几种主要森林树种为研究对象,采用开顶式增温法(OTCs)模拟气候变暖来研究增温对生长在两种不同光环境下(全光条件和林下低光环境)的几种幼苗早期生长和生理的影响,旨在从更新角度探讨亚高山针叶林生态系统不同树种对气候变暖在形态或生理上的响应差异,其研究结果可在一定程度上为预测气候变暖对亚高山针叶林物种组成和演替动态提供科学依据,同时也可为未来林业生产管理者提供科学指导。 1、与框外对照相比,OTCs 框内微环境发生了一些变化。OTCs 框内与框外对照气温年平均值分别为5.72 ¡æ和5.21 ¡æ,而地表温度年平均值分别为5.34 ¡æ和5.04 ¡æ,OTCs 使气温和地表年平均温度分别提高了0.51 ¡æ和0.34 ¡æ;OTCs框内空气湿度年平均值约高于框外对照,二者分别为90.4 %和85.3 %。 2、增温促进了三种幼苗生长和生物量的积累,但增温效果与幼苗种类及所处的光环境有关。无论在全光或林下低光条件下,增温条件下云杉幼苗株高、地径、分支数、总生物量及组分生物量(根、茎、叶重)都显著地增加;增温仅在全光条件下使红桦幼苗株高、地径、总生物量及组分生物量(根、茎、叶重)等参数显著地增加,而在林下低光条件下增温对幼苗生长和生物量积累的影响效果不明显;冷杉幼苗生长对增温的响应则与红桦幼苗相反,增温仅在林下低光条件下对冷杉幼苗生长和形态的影响才有明显的促进作用。 增温对三种幼苗的生物量分配模式产生了不同的影响,并且这种影响也与幼苗所处的光环境有关。无论在全光或林下低光环境下,增温都促使云杉幼苗将更多的生物量分配到植物地下部分,从而导致幼苗在增温条件下有更高的R/S 比;增温仅在林下低光条件下促使冷杉幼苗将更多的生物量投入到植物叶部,从而使幼苗R/S 比显著地降低;增温在全光条件下对红桦幼苗生物量分配的影响趋势与冷杉幼苗在低光条件下相似,即增温在全光条件下促使红桦幼苗分配更多的生物量到植物同化部分—叶部。 3、增温对亚高山针叶林生态系统中三种幼苗气体交换和生理表现的影响总体表现为正效应(Positive),即增温促进了几种幼苗的生理活动及其表现:(i)无论在全光或林下低光环境下,增温使三种幼苗的光合色素含量都有所增加;(ii)增温在一定程度上提高了三种使幼苗的PSII 光系统效率(Fv/Fm),从而使幼苗具有更强的光合电子传递活性;增温在一定程度使三种幼苗潜在的热耗散能力(NPQ)都有所增强,从而提高幼苗防御光氧化的能力;(iii)从研究结果来看,增温通过增加光合色素含量和表观量子效率等参数而促进幼苗的光合作用过程。总体来说增温对幼苗生理过程的影响效果与幼苗种类及所处的光环境有关,增温仅在全光条件下对红桦幼苗光合过程的影响才有明显的效果,而冷杉幼苗则相反,增温仅在低光条件下才对幼苗的生理过程有显著的影响。 4、增温对三种幼苗的抗氧化酶系统产生了一定的影响。从总体来说,增温使几种幼苗活性氧含量及膜脂过氧化作用降低,从而在一定程度上减轻了该区低温对植物生长的消极影响;增温倾向表明使三种幼苗体内抗氧化酶活性和非酶促作用有所提高,从而有利于维持活性氧代谢平衡。但增温影响效果与幼苗种类所处的光环境及抗氧化酶种类有关,增温对冷杉幼苗抗氧化酶活性的影响仅在林下低光环境下效果明显,而对红桦幼苗抗氧化酶活性的影响仅在全光条件下才有明显的效果。 总之,增温促进了亚高山针叶林生态系统中三种幼苗的生长和生理表现,但幼苗生长和生理对增温的响应随植物种类及所处的光环境不同而变化,这种响应差可能异赋予了不同植物种类在未来气候变暖背景下面对不同环境条件时具有不同的适应力和竞争优势,从而对亚高山针叶林生态系统物种组成和森林动态产生潜在的影响。 Enrichment of atmospheric greenhouse gases resulted from human activities suchas fossil fuel burning and deforestation has increased global mean temperature by 0.6¡æ in the 20th century and is predicted to increase it by 1.4-5.8 ¡æ. The globalwarming will have profound, long-term impacts on terrestrial plants and ecosystems.The ecoologcial consequences arising from global warming have also become thevery important issuses of global change research. The subalpine coniferous forests inthe eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying theeffects of climate warming on terrestrial ecosystems. The light environment differssignificantly between clear-outs and spruce plantations, which is particularlyimportant for plant regeneration and forest dynamics in the subalpine coniferous forests. In this paper, the short-term effects of two levels of air temperature (ambient andwarmed) and light (full light and ca. 10% of full light regimes) on the early growthand physiology of Picea asperata, Abies faxoniana and Betula albo-sinensis seedlingswas determined using open-top chambers (OTCs). The aim of the present study wasto understand the differences between tree species in their responses to experimentalwarming from the perspective of regeneration. Our results could provide insights intothe effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientificdirection for the production and management under future climate change. 1. The OTCs manipulation slightly altered thermal conditions during the growingseason compared with the outside chambers. The annual mean air temperature andsoil surface temperature was 5.72 and 5.34 ¡æ (within the chambers), and 5.21 and5.04 ¡æ (outside the chambers), respectively. The OTCs manipulation increased airtemperature and soil surface temperature by 0.51 and 0.34 ¡æ on average, respectively.Air relative humidity was slightly higher inside the OTCs compared with the controlplots, with 90.4 and 85.3 %, respectively. 2. Warming generally stimulated the growth and biomass accumulation of thethree tree species, but the effects of warming on growth and development variedbetween light conditions and species. Irrespective of light regimes, warmingsignificantly increased plant height, root collar diameter, total biomass, componentbiomass (stem, foliar and root biomass) and the number of branches in P. asperataseedlings; For A. faxoniana seedlings, significant effects of warming on all the tested parameters (plant height, root collar diameter, total biomass, and component biomass) were found only under low light conditions; In contrast, the growth responses of B.albo-sinensis seedlings to warming were found only under full light conditions. Warming had pronounced effects on the pattern of carbon allocation. Irrespectiveof light regimes, the P. asperata seedlings allocated relatively more biomass to rootsin responses to warming, which led to a higher R/S. Significant effects of warming onbiomass allocation were only found for the A. faxoniana seedlings grown under lowlight conditions, with significantly increased in leaf mass ratio (LMR) and decreasedin R/S in responses to warming manipulation. The carbon allocation responses of B.albo-sinensis seedling to warming under full light conditions were similar with theresponse of A. faxoniana seedlings grown under low light conditions. Warmingsignificantly decreased root mass ratio (RMR), and increased leaf mass ratio (LMR)and shoot/root biomass ratio (S/R) for the B. albo-sinensis seedlings grown under full light conditions. 3. Warming generally had a beneficial effect on physiological processes of dominant tree species in subalpine coniferous forest ecosystems: (i) Warming markedincreased the concentrations of photosynthetic pigments in both tree species, but theeffects of warming on photosynthetic pigments were greater under low lightconditions than under full light conditions for the two conifers; (ii) Warming tended toenhance the efficiency of PSII in terms of increase in Fv/Fm, which was related tohigher chloroplast electron transport activity; and enhance non-radiative energydissipation in terms of in increase in NPQ, which may reflect an increased capacity inpreventing photooxidation; (iii) Warming may enhance photosynthesis and advancephysiological activity in plants by increasing photosynthetic pigment concentration,the efficiency of PSII and apparent quantum yield (Φ) etc. From the results, theeffects of warming on seedlings’ physiological performance varied between lightenvironment and species. The effects of warming on photosynthesis performance of B.albo-sinesis seedlings were pronounced only under full light conditions, while thephysiological responses of A. faxoniana seedlings to warming were found only underthe 60-year plantation. These results provided further support for the observationsabove on growth responses of seedlings to warming. 4. Warming had marked effects on antioxidative systems of the three seedlings.Warming generally decreased H2O2 accumulation and the rate of O2- production, andalleviated degree of lipid peroxidation in terms of decreased MDA content, whichalleviated to some extent the negative effects of low temperature on the plant growthand development in this region; Warming tended to increase the activities ofantioxidative enzymes and stimulate the role of non-enzymatic AOS scavenging,which helped to create an balance in maintaining AOS metabolites for the threeseedlings. Nevertheless, the effects of warming on antioxidative defense systems werepronounced only under the 60-year plantation for the A. faxoniana seedlings. Incontrast, the marked effects of warming on antioxidative defense systems for the B.albo-sinesis seedlings were found only under the full light conditions. In sum, warming is considered to be generally positive in terms of growth andphysiological process. However, the responses of growth and physiology performanceto warming manipulation varied between species and light regimes. Competitive and adaptive relationships between tree species may be altered as a result of responsedifferences to warming manipulation, which is one mechanism by which globalwarming will alter species composition and forest dynamics of subalpine coniferousforest ecosystems under future climate change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

臭氧层损耗导致的地球表面UV-B辐射增强以及温室气体增多引起的气候变暖是当今两大全球环境问题。UV-B辐射增强和气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。作为世界第三极的青藏高原,UV-B 辐射增强以及气候变暖现象尤为突出。本试验所在林区是青藏高原东缘的主要林区,具有大面积的亚高山人工针叶成熟林,在全球变化背景下该森林的天然更新潜力如何是急待回答的重要问题。基于此,本研究围绕森林树种的种子和幼苗这一更新的重要阶段,开展了气候变暖、UV-B辐射增强和联合胁迫对云杉种子萌发及幼苗定居影响的研究,旨在全球变化背景下,探讨全球变暖、UV-B 辐射增强和联合胁迫是否对西南地区大面积人工亚高山针叶林更新的种子萌发和幼苗定居阶段产生影响。 本文以青藏高原东缘亚高山针叶林主要树种云杉为研究对象,研究云杉种子萌发及幼苗的生长和生理对UV-B辐射增强与气候变暖的响应。采用UV-B荧光灯(UV-lamp)来模拟增强的UV-B 辐射,此外,采用开顶式有机玻璃罩(OTCs)来模拟气候变暖。本试验包括四个处理:(1)大气UV-B 辐射+大气温度(C);(2)大气UV-B 辐射+模拟气候变暖(W);(3)增强的UV-B辐射+大气温度(U);(4)增强的UV-B辐射+模拟气候变暖(U+W)。 根据本试验结果,UV-B辐射增强对云杉种子萌发没有显著影响,它对萌发云杉幼苗的影响主要体现在幼叶展开以后。根据两年的试验结果,增强的UV-B辐射降低了云杉幼苗抗氧化酶活性,降低了抗氧化物质的含量,此外,造成了膜质的过氧化,表现为MDA在针叶中的积累。增强的UV-B照射处理萌发云杉幼苗两年后,幼苗的生长受到显著抑制。我们的结果显示,OTCs分别提高了空气(10 cm)和土壤(5 cm)温度1.74℃和0.94 ℃。增温显著地促进了云杉种子提前萌发,提高了萌发速率和萌发比率,而且,明显地促进了幼苗的生长,表现为株高和生物量累积的显著增长。此外增温还有利于云杉幼苗根的伸长生长以及生物量的累积,这可以使云杉幼苗更好地利用土壤中的水分和营养元素。 根据本试验结果,温度升高显著地促进了增强UV-B辐射下云杉萌发幼苗的生长,这说明,温度升高缓解了UV-B辐射增强对云杉萌发幼苗的负面影响。这种缓解作用可能是温度升高对UV-B辐射增强处理下幼苗的抗氧化系统活性改善的结果。温度升高还缓解了高UV-B辐射对云杉幼苗根生长的抑制作用,这也可能是增温缓解伤害的原因之一。此外,根据我们的试验结果,增温与UV-B辐射增强联合作用(U+W)下云杉萌发幼苗的生长状况好于大气温度与大气UV-B辐射联合(C)处理,表现为株高、地径、根长和生物量积累均高于C处理,因此可以推断,UV-B辐射增强与气候变暖同时存在对萌发幼苗在两年之内的生长没有产生抑制作用,也就是说,气候变暖的缓解作用完全弥补了UV-B辐射增强的有害作用。 同样,增强的UV-B辐射显著影响了云杉幼苗的光合作用,表现为净光合速率(Pn)和表观量子效率(Φ)的提高,此外,根据我们的试验结果,它还造成了PSII的光抑制。增强的UV-B辐射显著抑制了云杉幼苗对营养元素的吸收,表现为大量营养元素、碳、钙、镁和锌含量的降低,但是,它却显著促进了铁在植株体内的积累。增温显著地提高了净光合速率,但是,它对光系统II(PSII)的光化学效率影响不大。温度升高缓解了UV-B增强对云杉幼苗光合作用的伤害,表现为净光合速率、表观量子效率以及PSII光化学效率的提高。此外,温度升高还缓解了UV-B辐射增强对离子吸收的抑制作用。 Enhanced UV-B radiation due to the reduction of O3 layer and global warming induced by increased greenhouse gases in the air have become the two pressing aspects of global climate changes. Moreover, enhanced UV-B radiation and warming have profound and long-term impacts on terrestrial plants and ecosystems, and the studies focusing on the two factors have attracted many attentions. Qinghai-Tibetan Plateau is the third in elevation in the world, and enhanced UV-B radiation and climate warming are especially prominent in this region. Our research located in the main forest belt in the eastern Qinghai-Tibetan Plateau where large areas of subalpine coniferous forests distributed. Based on that, we carried out a research to study the effects of enhanced UV-B radiation and climate warming on seed germination and seedlings growth of seedlings which are the important basic stage in forest regeneration. This research was arranged by a complete factorial design and included two factors (UV-B radiation and temperature) with two levels. The UV-lamps were used to manipulate the supplemental UV-B radiation and open-top chambers (OTCs) were adopted to increase temperature. The four treatments were: (1) C, ambient UV-B without warming; (2) U, enhanced UV-B without warming; (3) W, ambient UV-B with OTCs warming; (4) U+W, enhanced UV-B with OTCs warming. The main results were exhibited as follows: 1. Based on our results in this research, OTCs increased temperature on average 1.74℃ in air (10 cm above ground) and 0.92 ℃ in soil (5 cm beneath ground). Furthermore, OTCs also slightly reduced soil moisture and relative air humidity, however, the differences was not statistically significant. 2. Our results showed that enhanced UV-B had no significant effects on the seeds germination of P. asperata. Enhanced UV-B affected sprouts of P. asperata until the needles unfolded. During two years, enhanced UV-B inhibited the efficiency of the antioxidant defense systems, and as a result, it induced oxidant stress and the accumulation of MDA in needles. After two years of exposure to enhanced UV-B, the growth of P. asperata sprouts was markedly restrained compared with those under ambient UV-B radiation and temperature (C). Warming significantly stimulated the germination speed and increased the germination rate of P. asperata seeds. In the next place, it prominently facilitated the growth of P. asperata sprouts, represented as improvements in stem elongation and biomass accumulation. Furthermore, warming also increased root growth of P. asperata sprouts, which could made sprouts more efficient to use water and nutrient elements in soil. In this research, warming alleviated the deleterious effects of enhanced UV-B on P. asperata sprouts. It markedly stimulated the growth of P. asperata sprouts exposed to enhanced UV-B. The ease effects of warming on the abilities of the antioxidant defense systems might account for its amending effects on growth. After two years of exposure to enhanced UV-B radiation and warming, the growth of P. asperata sprouts was better than those under ambient UV-B radiation without warming (C), which could be seen from the higher plant height, basal diameter, root length and total biomass accumulation compared with C. 3. Enhanced UV-B radiation significantly influenced the photosynthesis processes of two-year old P. asperata seedlings. Our results showed that enhanced UV-B reduced the net photosynthetic rate (Pn) and the apparent quantum efficiency (Φ), and induced photoinhibition of photosynthetic system II (PSII). Enhanced UV-B significantly decreased the concentration of nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg) and zinc (Zn), however, it increased the accumulation of iron (Fe) in the whole plant of P. asperata seedlings. Warming significantly stimulated Pn of P. asperata seedlings but it had no prominent impacts on the photochemical efficiency of PSII. In our research, warming also alleviated the harmful effects of enhanced UV-B on photosynthesis and absorption of ions of P. asperata seedlings. It increased Pn, Φ and the photochemical efficiency of PSII in seedlings exposed to enhanced UV-B. Moreover, warming also increased the absorption of ions of the seedlings exposed to enhanced UV-B radiation.