1000 resultados para Picea Abies
Resumo:
An important challenge in forest industry is to get the appropriate raw material out from the forests to the wood processing industry. Growth and stem reconstruction simulators are therefore increasingly integrated in industrial conversion simulators, for linking the properties of wooden products to the three-dimensional structure of stems and their growing conditions. Static simulators predict the wood properties from stem dimensions at the end of a growth simulation period, whereas in dynamic approaches, the structural components, e.g. branches, are incremented along with the growth processes. The dynamic approach can be applied to stem reconstruction by predicting the three-dimensional stem structure from external tree variables (i.e. age, height) as a result of growth to the current state. In this study, a dynamic growth simulator, PipeQual, and a stem reconstruction simulator, RetroSTEM, are adapted to Norway spruce (Picea abies [L.] Karst.) to predict the three-dimensional structure of stems (tapers, branchiness, wood basic density) over time such that both simulators can be integrated in a sawing simulator. The parameterisation of the PipeQual and RetroSTEM simulators for Norway spruce relied on the theoretically based description of tree structure developing in the growth process and following certain conservative structural regularities while allowing for plasticity in the crown development. The crown expressed both regularity and plasticity in its development, as the vertical foliage density peaked regularly at about 5 m from the stem apex, varying below that with tree age and dominance position (Study I). Conservative stem structure was characterized in terms of (1) the pipe ratios between foliage mass and branch and stem cross-sectional areas at crown base, (2) the allometric relationship between foliage mass and crown length, (3) mean branch length relative to crown length and (4) form coefficients in branches and stem (Study II). The pipe ratio between branch and stem cross-sectional area at crown base, and mean branch length relative to the crown length may differ in trees before and after canopy closure, but the variation should be further analysed in stands of different ages and densities with varying site fertilities and climates. The predictions of the PipeQual and RetroSTEM simulators were evaluated by comparing the simulated values to measured ones (Study III, IV). Both simulators predicted stem taper and branch diameter at the individual tree level with a small bias. RetroSTEM predictions of wood density were accurate. For focusing on even more accurate predictions of stem diameters and branchiness along the stem, both simulators should be further improved by revising the following aspects in the simulators: the relationship between foliage and stem sapwood area in the upper stem, the error source in branch sizes, the crown base development and the height growth models in RetroSTEM. In Study V, the RetroSTEM simulator was integrated in the InnoSIM sawing simulator, and according to the pilot simulations, this turned out to be an efficient tool for readily producing stand scale information about stem sizes and structure when approximating the available assortments of wood products.
Resumo:
The objectives of this study were to analyze the impact of structural stand characteristics on ignition potential, surface fuel moisture, and fire behavior in Pinus sylvestris L. and Picea abies (L.) Karst stands in Finland and to explain stand-specific fire danger using the Canadian Fire Weather Index System and the Finnish Fire Risk Index. Additionally, the study analyzes the relationship between observed fire activity and fire weather indices at different stages of growing season. Field experiments were carried out in Pinus sylvestris or Picea abies dominated stands during fire seasons 2001 and 2002. Observations on ignition potential, fuel moisture, and fire behavior were analyzed in relation to stand structure and the outputs of the Finnish and Canadian fire weather indices. Seasonal patterns of fire activity were examined based on national fire statistics 1996 2003, effective temperature sum, and the fire weather indices. Point fire ignition potential was highest in Pinus clear-cuts and lowest in closed Picea stands. Moss-dominated surface fuels were driest in clear-cut and sapling stage stands and presented the highest moisture content under closed Picea canopy. Pinus sylvestris stands carried fire under a wide range of fire weather conditions under which Picea abies stands failed to sustain fire. In the national fire records, the daily number of reported ignitions presented its highest value during late fire season whereas the daily area burned peaked most substantially during early season. The fire weather indices correlated significantly with ignition potential and fuel moisture but were unable to explain fire behavior in the experimental fires. During the initial and final stages of the growing season, fire activity was disconnected from weather-based fire danger ratings. Information on stand structure and season stage would benefit the assessment of fire danger in Finnish forest landscape for fire suppression and controlled burning purposes.
Resumo:
The aim of this thesis was to study the basic relationships between thinning and fertilisation, tree growth rate and wood properties of Norway spruce (Picea abies (L.) Karst.) throughout a stand rotation. The material consisted of a total of 109 trees from both long-term thinning (Heinola, 61°10'N, 26°01'E; Punkaharju, 61°49'N, 29°19'E) and fertilisation-thinning experiments (Parikkala, 61°36'N, 29°22'E; Suonenjoki, 62°45'N, 27°00'E) in Finland. Wood properties, i.e., radial increment, wood density, latewood proportion, tracheid length, cell wall thickness and lumen diameter, as well as relative lignin content, were measured in detail from the pith to the bark, as well as from the stem base towards the stem apex. Intensive thinning and fertilisation treatments of Norway spruce stands increased (8% 64%) the radial increment of studied trees at breast height (1.3 m). At the same time, a faster growth rate slightly decreased average wood density (2% 7%), tracheid length (0% 9%) and cell wall thickness (1% 17%). The faster growth resulted in only small changes (0% 9%) in lumen diameter and relative lignin content (1% 2%; lignin content was 25.4% 26%). However, the random variation in wood properties was large both between and within trees and annual rings. The results of this thesis indicate that the prevailing thinning and fertilisation treatments of Norway spruce stands in Fennoscandia may significantly enhance the radial increment of individual trees, and cause only small or no detrimental changes in wood and tracheid properties.
Resumo:
Tutkimus on osa Metsäklusteri Oy:n Future Biorefinery –tutkimusohjelmaa, jossa kartoitetaan mahdollisuuksia hyödyntää metsäteollisuuden raaka-aineita aiempaa tarkemmin ja uusissa tuotteissa. Tutkimuksen tavoitteena on selvittää männyn (Pinus sylvestris L.) ja kuusen (Picea abies [L.] Karst.) juurten ja kantopuun rakenne ja ominaisuudet. Tutkimuksessa selvitetään löytyykö männyn ja kuusen juurista reaktiopuuta ja määritetään asetoniliukoisten uuteaineiden osuus kantoja juuripuussa. Tutkimusaineistona oli viisi eri-ikäistä mäntyä ja viisi eri-ikäistä kuusta. Juuri- ja kantoaineisto kerättiin Metsäntutkimuslaitoksen toimesta Parkanon seudulta (62.017°N, 23.017°E) hakkuun jälkeen. Maanalaisista juurista otettiin näytteet kolmelta eri etäisyydeltä juurenniskaan nähden. Kummankaan lajin juurista ei löytynyt varsinaista reaktiopuuta, mutta joissakin näytteissä havaittiin lievää reaktiopuuta. Lievää reaktiopuuta löytyi enemmän männyn kuin kuusen juurista, eikä sitä löytynyt lainkaan kaikkein ohuimmista, noin 2 cm paksuisista juurenosista. Männyn kannoissa uuteaineprosentti oli korkeampi kuin kuusen. Männyn juurissa uuteaineprosentti kasvoi edettäessä kohti juuren kärkeä. Kuusella uuteaineprosentti laski aluksi, mutta lähellä juuren kärkeä taas kasvoi. Kuoren uuteainepitoisuus oli molemmilla puulajeilla korkeampi kuin puuaineen. Tutkimusaineisto oli suppea, eikä tutkimuksessa pyritty tilastolliseen yleistettävyyteen. Laajemmasta aineistosta tehdylle tutkimukselle on tarvetta, sillä turvekankailta saatavan puun tarjonta on Suomessa kasvussa, mutta juurten uuteaine- ja reaktiopuututkimuksia on tehty vain kivennäismailta kerätyistä aineistoista.
Resumo:
Anthesis was studied at the canopy level in 10 Norway spruce stands from 9 localities in Finland from 1963 to 1974. Distributions of pollen catches were compared to the normal Gaussian distribution. The basis for the timing studies was the 50 per cent point of the anthesis-fitted normal distribution. Development up to this point was given in calendar days, in degree days (>5 °C) and in period units. The count of each parameter began on March 19 (included). Male flowering in Norway spruce stands was found to have more annual variation in quantity than in Scots pine stands studied earlier. Anthesis in spruce in northern Finland occurred at a later date than in the south. The heat sums needed for anthesis varied latitudinally less in spruce than in pine. The variation of pollen catches in spruce increased towards north-west as in the case of Scots pine. In the unprocessed data, calendar days were found to be the most accurate forecast of anthesis in Norway spruce both for a single year and for the majority of cases of stand averages over several years. Locally, the period unit could be a more accurate parameter for the stand average. However, on a calendar day basis, when annual deviations between expected and measured heat sums were converted to days, period units were narrowly superior to days. The geographical correlations respect to timing of flowering, calculated against distances measured along simulated post-glacial migration routes, were stronger than purely latitudinal correlations. Effects of the reinvasion of Norway spruce into Finland are thus still visible in spruce populations just as they were in Scots pine populations. The proportion of the average annual heat sum needed for spruce anthesis grew rapidly north of a latitude of ca. 63° and the heat sum needed for anthesis decreased only slighty towards the timberline. In light of flowering phenology, it seems probable that the northwesterly third of Finnish Norway spruce populations are incompletely adapted to the prevailing cold climate. A moderate warming of the climate would therefore be beneficial for Norway spruce. This accords roughly with the adaptive situation in Scots pine.
Resumo:
Root and butt rot is the most harmful fungal disease affecting Norway spruce in southern Finland. In approximately 90 % of cases the causal agent is Heterobasidion parviporum. Root and butt rot infections have not been reported in Finnish peatlands. However, the increase in logging operations in peatlands means there is a risk that the fungus will eventually spread to these areas. The aim of this study was to find out the impact of growing site on the resistance of Norway spruce to Heterobasidion parviporum infections. This was investigated by artificially inoculating H. parviporum to spruce trees in pristine mire, drained peatland and mineral soil and comparing the defence reactions. Additionally, the effect of genotype on resistance was studied by comparing the responses of spruce clones representing different geographic origins. The roots and stems of the trees to be sampled were wounded and inoculated with wood dowels pre-colonised by H. parviporum hyphae. The resulting necrosis around the point of inoculation was observed. It was presumed that increased length of necrosis indicates high susceptibility of the tree to the disease. The relationship between growth rate and host resistance was also studied. The results indicated that growing site does not have a statistically significant effect on host resistance. The average length of necrosis around the point of inoculation was 35 mm in pristine mire, 37 mm in drained peatland and 40 mm in mineral soil. It was observed that growth rate does not affect resistance, but that the genotype of the tree does have an effect. The most resistant spruce clone was the one with Russian origin. The results suggest that the spruce stands in peatlands are not more resistant to root and butt rot infections than those in mineral soil. These findings should be taken into consideration when logging peatland forests.
Resumo:
Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies , somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.
Resumo:
Roots, stems, branches and needles of 160 Norway spruce trees younger than 10 years were sampled in seven forest stands in central Slovakia in order to establish their biomassfunctions (BFs) and biomassexpansionfactors (BEFs). We tested three models for each biomass pool based on the stem base diameter, tree height and the two parameters combined. BEF values decreased for all spruce components with increasing height and diameter, which was most evident in very young trees under 1 m in height. In older trees, the values of BEFs did tend to stabilise at the height of 3–4 m. We subsequently used the BEFs to calculate dry biomass of the stands based on average stem base diameter and tree height. Total stand biomass grew with increasing age of the stands from about 1.0 Mg ha−1 at 1.5 years to 44.3 Mg ha−1 at 9.5 years. The proportion of stem and branch biomass was found to increase with age, while that of needles was fairly constant and the proportion of root biomass did decrease as the stands grew older.
Resumo:
European beech (Fagus sylvatica L.) and Norway spruce (Picea abies Karst.) are two of the most ecologically and economically important forest tree species in Europe. These two species co-occur in many locations in Europe, leading to direct competition for canopy space. Foliage characteristics of two naturally regenerated pure stands of beech and spruce with fully closed canopies were contrasted to assess the dynamic relationship between foliage adaptability to shading, stand LAI and tree growth. We found that individual leaf size is far more conservative in spruce than in beech. Individual leaf and needle area was larger at the top than at the bottom of the canopy in both species. Inverse relationship was found for specific leaf area (SLA), highest SLA values were found at lowest light availability under the canopy. There was no difference in leaf area index (LAI) between the two stands, however LAI increased from 10.8 to 14.6 m2m-2 between 2009 and 2011. Dominant trees of both species were more efficient in converting foliage mass or area to produce stem biomass, although this relationship changed with age and was species-specific. Overall, we found larger foliage plasticity in beech than in spruce in relation to light conditions, indicating larger capacity to exploit niche openings.
Resumo:
In boreal forest regions, a great portion of forest tree seedlings are stored indoors in late autumn to prevent seedlings from outdoor winter damage. For seedlings to be able to survive in storage it is crucial that they store well and can cope with the dark and cold storage environment. The aim of this study was to search for genes that can determine the vitality status of Norway spruce (Picea abies (L.) Karst.) seedlings during frozen storage. Furthermore, the sensitivity of the ColdNSure (TM) test, a gene activity test that predicts storability was assessed. The storability of seedlings was tested biweekly by evaluating damage with the gene activity test and the electrolyte leakage test after freezing seedlings to -25 A degrees C (the SELdiff-25 method). In parallel, seedlings were frozen stored at -3 A degrees C. According to both methods, seedlings were considered storable from week 41. This also corresponded to the post storage results determined at the end of the storage period. In order to identify vitality indicators, Next Generation Sequencing (NGS) was performed on bud samples collected during storage. Comparing physiological post storage data to gene analysis data revealed numerous vitality related genes. To validate the results, a second trial was performed. In this trial, gene activity was better in predicting seedling storability than the conventional freezing test; this indicates a high sensitivity level of this molecular assay. For multiple indicators a clear switch between damaged and vital seedlings was observed. A collection of indicators will be used in the future development of a commercial vitality test.