84 resultados para Phytosanitary


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sanitary and phytosanitary matters have acquired greater significance in the region's trade, as reflected in the significant number of complaints brought before the various dispute settlement mechanisms pertaining to the regional integration schemes. This may be attributed to the importance of the Latin American countries in world agricultural trade and to different phytosanitary and zoosanitary standards required by each. Given the multiplication of bilateral and plurilateral agreements in Latin America and the Caribbean, convergence on the sanitary standards required under such accords is crucial for the trade integration of a region that is an agro-exporter par excellence. Convergence is essential to facilitate market access and expedite trade flows. This bulletin assesses convergence of standards in the bilateral and plurilateral trade agreements signed by the countries of the region, the treatment afforded to the principles contained in the World Trade Organization (WTO) Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement) and the progress the region has made relative to that Agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing and managing risks relating to the consumption of food stuffs for humans and to the environment has been one of the most complex legal issues in WTO law, ever since the Agreement on Sanitary and Phytosanitary Measures was adopted at the end of the Uruguay Round and entered into force in 1995. The problem was expounded in a number of cases. Panels and the Appellate Body adopted different philosophies in interpreting the agreement and the basic concept of risk assessment as defined in Annex A para. 4 of the Agreement. Risk assessment entails fundamental question on law and science. Different interpretations reflect different underlying perceptions of science and its relationship to the law. The present thesis supported by the Swiss National Research Foundation undertakes an in-depth analysis of these underlying perceptions. The author expounds the essence and differences of positivism and relativism in philosophy and natural sciences. He clarifies the relationship of fundamental concepts such as risk, hazards and probability. This investigation is a remarkable effort on the part of lawyer keen to learn more about the fundamentals based upon which the law – often unconsciously – is operated by the legal profession and the trade community. Based upon these insights, he turns to a critical assessment of jurisprudence both of panels and the Appellate Body. Extensively referring and discussing the literature, he deconstructs findings and decisions in light of implied and assumed underlying philosophies and perceptions as to the relationship of law and science, in particular in the field of food standards. Finding that both positivism and relativism does not provide adequate answers, the author turns critical rationalism and applies the methodologies of falsification developed by Karl R. Popper. Critical rationalism allows combining discourse in science and law and helps preparing the ground for a new approach to risk assessment and risk management. Linking the problem to the doctrine of multilevel governance the author develops a theory allocating risk assessment to international for a while leaving the matter of risk management to national and democratically accountable government. While the author throughout the thesis questions the possibility of separating risk assessment and risk management, the thesis offers new avenues which may assist in structuring a complex and difficult problem

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International market access for fresh commodities is regulated by international accepted phytosanitary guidelines, the objectives of which are to reduce the biosecurity risk of plant pest and disease movement. Papua New Guinea (PNG) has identified banana as a potential export crop and to help meet international market access requirements, this thesis provides information for the development of a pest risk analysis (PRA) for PNG banana fruit. The PRA is a three step process which first identifies the pests associated with a particular commodity or pathway, then assesses the risk associated with those pests, and finally identifies risk management options for those pests if required. As the first step of the PRA process, I collated a definitive list on the organisms associated with the banana plant in PNG using formal literature, structured interviews with local experts, grey literature and unpublished file material held in PNG field research stations. I identified 112 organisms (invertebrates, vertebrate, pathogens and weeds) associated with banana in PNG, but only 14 of these were reported as commonly requiring management. For these 14 I present detailed information summaries on their known biology and pest impact. A major finding of the review was that of the 14 identified key pests, some research information occurs for 13. The single exception for which information was found to be lacking was Bactrocera musae (Tryon), the banana fly. The lack of information for this widely reported ‘major pest on PNG bananas’ would hinder the development of a PNG banana fruit PRA. For this reason the remainder of the thesis focused on this organism, particularly with respect to generation of information required by the PRA process. Utilising an existing, but previously unanalysed fruit fly trapping database for PNG, I carried out a Geographic Information System analysis of the distribution and abundance of banana in four major regions of PNG. This information is required for a PRA to determine if banana fruit grown in different parts of the country are at different risks from the fly. Results showed that the fly was widespread in all cropping regions and that temperature and rainfall were not significantly correlated with banana fly abundance. Abundance of the fly was significantly correlated (albeit weakly) with host availability. The same analysis was done with four other PNG pest fruit flies and their responses to the environmental factors differed to banana fly and each other. This implies that subsequent PRA analyses for other PNG fresh commodities will need to investigate the risk of each of these flies independently. To quantify the damage to banana fruit caused by banana fly in PNG, local surveys and one national survey of banana fruit infestation were carried out. Contrary to expectations, infestation was found to be very low, particularly in the widely grown commercial cultivar, Cavendish. Infestation of Cavendish fingers was only 0.41% in a structured, national survey of over 2 700 banana fingers. Follow up laboratory studies showed that fingers of Cavendish, and another commercial variety Lady-finger, are very poor hosts for B. musae, with very low host selection rates by female flies and very poor immature survival. An analysis of a recent (within last decade) incursion of B. musae into the Gazelle Peninsula of East New Britain Province, PNG, provided the final set of B. musae data. Surveys of the fly on the peninsular showed that establishment and spread of the fly in the novel environment was very rapid and thus the fly should be regarded as being of high biosecurity concern, at least in tropical areas. Supporting the earlier impact studies, however, banana fly has not become a significant banana fruit problem on the Gazelle, despite bananas being the primary starch staple of the region. The results of the research chapters are combined in the final Discussion in the form of a B. musae focused PRA for PNG banana fruit. Putting the thesis in a broader context, the Discussion also deals with the apparent discrepancy between high local abundance of banana fly and very low infestation rates. This discussion focuses on host utilisation patterns of specialist herbivores and suggests that local pest abundance, as determined by trapping or monitoring, need not be good surrogate for crop damage, despite this linkage being implicit in a number of international phytosanitary protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over 1 billion ornamental fish comprising more than 4000 freshwater and 1400 marine species are traded internationally each year, with 8-10 million imported into Australia alone. Compared to other commodities, the pathogens and disease translocation risks associated with this pattern of trade have been poorly documented. The aim of this study was to conduct an appraisal of the effectiveness of risk analysis and quarantine controls as they are applied according to the Sanitary and Phytosanitary (SPS) agreement in Australia. Ornamental fish originate from about 100 countries and hazards are mostly unknown; since 2000 there have been 16-fold fewer scientific publications on ornamental fish disease compared to farmed fish disease, and 470 fewer compared to disease in terrestrial species (cattle). The import quarantine policies of a range of countries were reviewed and classified as stringent or non-stringent based on the levels of pre-border and border controls. Australia has a stringent policy which includes pre-border health certification and a mandatory quarantine period at border of 1-3 weeks in registered quarantine premises supervised by government quarantine staff. Despite these measures there have been many disease incursions as well as establishment of significant exotic viral, bacterial, fungal, protozoal and metazoan pathogens from ornamental fish in farmed native Australian fish and free-living introduced species. Recent examples include Megalocytivirus and Aeromonas salmonicida atypical strain. In 2006, there were 22 species of alien ornamental fish with established breeding populations in waterways in Australia and freshwater plants and molluscs have also been introduced, proving a direct transmission pathway for establishment of pathogens in native fish species. Australia's stringent quarantine policies for imported ornamental fish are based on import risk analysis under the SPS agreement but have not provided an acceptable level of protection (ALOP) consistent with government objectives to prevent introduction of pests and diseases, promote development of future aquaculture industries or maintain biodiversity. It is concluded that the risk analysis process described by the Office International des Epizooties under the SPS agreement cannot be used in a meaningful way for current patterns of ornamental fish trade. Transboundary disease incursions will continue and exotic pathogens will become established in new regions as a result of the ornamental fish trade, and this will be an international phenomenon. Ornamental fish represent a special case in live animal trade where OIE guidelines for risk analysis need to be revised. Alternatively, for countries such as Australia with implied very high ALOP, the number of species traded and the number of sources permitted need to be dramatically reduced to facilitate hazard identification, risk assessment and import quarantine controls. Lead papers of the eleventh symposium of the International Society for Veterinary Epidemiology and Economics (ISVEE), Cairns, Australia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioversity International is reviewing its moratorium on the distribution of virus-infected Musa germplasm from the International Transit Centre (ITC), and the ProMusa Crop Protection Working Group has been invited to comment on policy changes. This paper was written to form a basis of discussion among the working group members during the ISHS/ProMusa symposium. It argues that the distribution of Musa germplasm should be guided by the International Plant Protection Convention, which states that it is the responsibility of the importing country, not the exporter, to impose the phytosanitary measures. There may be special circumstances where the release of badnavirus-infected germplasm from the ITC could be justified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent 8th Australasian plant virology workshop in Rotorua, New Zealand, discussed the development of a New Zealand database of plant virus and virus-like organisms. Key points of discussion included: (i) the purpose of such a database; (ii) who would benefit from the information in a database; (iii) the scope of a database and its associated collections; (iv) database information and format; and (v) potential funding of such a database. From the workshop and further research, we conclude that the preservation and verification of specimens within the collections and the development of a New Zealand database of plant virus and virus-like organisms is essential. Such a collection will help to fulfil statutory requirements in New Zealand and assist in fulfilling international obligations under the International Plant Protection Convention. Sustaining such a database will assist New Zealand virologists and statutory bodies to undertake scientifically sound research. Establishing reliable records and an interactive database will help to ensure accurate and timely diagnoses of diseases caused by plant viruses and virus-like organisms. Detection of new incursions and their diagnosis will be further enhanced by the use of such reference collections and their associated database. Connecting and associating this information to similar overseas databases would assist international collaborations and allow access to the latest taxonomic and diagnostic resources. Associated scientists working in the areas of plant breeding, export phytosanitary assurance and in the area of the conservation estate would also benefit from access to verified specimens of plant viruses and virus-like organisms. We conclude that funding of a New Zealand database of virus and virus-like organisms and its associated collections should be based partly on Crown funds, as it is a nationally significant biological resource.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera tryoni (Froggatt), is the most serious pest of the native tephritid species in Australia and a significant market access impediment for fruit commodities from any area where this species is endemic. An area-wide management (AWM) program was implemented in the Central Burnett district of Queensland with the aim of improving fruit fly control and enhancing market access opportunities for citrus and other fruits produced in the district. The primary control measures adopted in the AWM system included bait spraying of commercial and non-commercial hosts and the year-round installation of male annihilation technology (MAT) carriers in both orchards and town areas. The MAT carrier used consisted of a dental wick impregnated with 1 ml cue-lure [4-(4-acetoxyphenol)-2-butanone] and 1 ml Malathion 500 EC in a plastic cup. The application of these control measures from 2003 to 2007 resulted in overall suppression of fruit fly populations across the entire district. Male trap catches at the peak activity time were reduced by 95% and overall fruit fly infestation in untreated backyard fruit of town areas reduced from 60.8% to 21.8%. Our results demonstrate remarkable improvement in fruit fly control and economic benefit to the Central Burnett horticulture. Therefore, commercial growers are continuing the AWM program as a long-term, industry funded activity, to provide an additional layer of phytosanitary security for market access of fruit commodities from this district.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cassava brown streak disease (CBSD) was described for the first time in Tanganyika (now Tanzania) about seven decades ago. Tanganyika (now Tanzania) about seven decades ago. It was endemic in the lowland areas of East Africa and inland parts of Malawi and caused by Cassava brown streak virus (CBSV; genus Ipomovirus; Potyviridae). However, in 1990s CBSD was observed at high altitude areas in Uganda. The causes for spread to new locations were not known.The present work was thus initiated to generate information on genetic variability, clarify the taxonomy of the virus or viruses associated with CBSD in Eastern Africa as well as to understand the evolutionary forces acting on their genes. It also sought to develop a molecular based diagnostic tool for detection of CBSD-associated virus isolates. Comparison of the CP-encoding sequences of CBSD-associated virus isolates collected from Uganda and north-western Tanzania in 2007 and the partial sequences available in Genbank revealed occurrence of two genetically distinct groups of isolates. Two isolates were selected to represent the two groups. The complete genomes of isolates MLB3 (TZ:Mlb3:07) and Kor6 (TZ:Kor6:08) obtained from North-Western (Kagera) and North-Eastern (Tanga) Tanzania, respectively, were sequenced. The genomes were 9069 and 8995 nucleotides (nt), respectively. They translated into polyproteins that were predicted to yield ten mature proteins after cleavage. Nine proteins were typical in the family Potyviridae, namely P1, P3, 6K1, CI, 6K2, VPg, NIa-Pro, NIb and CP, but the viruses did not contain HC-Pro. Interestingly, genomes of both isolates contained a Maf/HAM1-like sequence (HAM1h; 678 nucleotides, 25 kDa) recombined between the NIb and CP domains in the 3’-proximal part of the genomes. HAM1h was also identified in Euphorbia ringspot virus (EuRSV) whose sequence was in GenBank. The HAM1 gene is widely spread in both prokaryotes and eukaryotes. In yeast (Saccharomyces cerevisiae) it is known to be a nucleoside triphosphate (NTP) pyrophosphatase. Novel information was obtained on the structural variation at the N-termini of polyproteins of viruses in the genus Ipomovirus. Cucumber vein yellowing virus (CVYV) and Squash vein yellowing virus (SqVYV) contain a duplicated P1 (P1a and P1b) but lack the HC-Pro. On the other hand, Sweet potato mild mottle virus (SPMMV), has a single but large P1 and has HC-Pro. Both virus isolates (TZ:Mlb3:07 & TZ:Kor6:08) characterized in this study contained a single P1 and lacked the HC-Pro which indicates unique evolution in the family Potyviridae. Comparison of 12 complete genomes of CBSD-associated viruses which included two genomes characterized in this study, revealed genetic identity of 69.0–70.3% (nt) and amino acid (aa) identities of 73.6–74.4% at polyprotein level. Comparison was also made among 68 complete CP sequences, which indicated 69.0-70.3 and 73.6-74.4 % identity at nt and aa levels, respectively. The genetic variation was large enough for dermacation of CBSD-associated virus isolates into two distinct species. The name CBSV was retained for isolates that were related to CBSV isolates available in database whereas the new virus described for the first time in this study was named Ugandan cassava brown streak virus (UCBSV) by the International Committee on Virus Taxonomy (ICTV). The isolates TZ:Mlb3:07 and TZ:Kor6:08 belong to UCBSV and CBSV, respectively. The isolates of CBSV and UCBSV were 79.3-95.5% and 86.3-99.3 % identitical at nt level, respectively, suggesting more variation amongst CBSV isolates. The main sources of variation in plant viruses are mutations and recombination. Signals for recombination events were detected in 50% of isolates of each virus. Recombination events were detected in coding and non-coding (3’-UTR) sequences except in the 5’UTR and P3. There was no evidence for recombination between isolates of CBSV and UCBSV. The non-synonomous (dN) to synonomous (dS) nucleotide substitution ratio (ω) for the HAM1h and CP domains of both viruses were ≤ 0.184 suggesting that most sites of these proteins were evolving under strong purifying selection. However, there were individual amino acid sites that were submitted to adaptive evolution. For instance, adaptive evolution was detected in the HAM1h of UCBSV (n=15) where 12 aa sites were under positive selection (P< 0.05) but not in CBSV (n=12). The CP of CBSV (n=23) contained 12 aa sites (p<0.01) while only 5 aa sites in the CP gene of UCBSV were predicted to be submitted to positive selection pressure (p<0.01). The advantages offered by the aa sites under positive selection could not be established but occurrence of such sites in the terminal ends of UCBSV-HAMIh, for example, was interpreted as a requirement for proteolysis during polyprotein processing. Two different primer pairs that simultaneously detect UCBSV and CBSV isolates were developed in this study. They were used successfully to study distribution of CBSV, UCBSV and their mixed infections in Tanzania and Uganda. It was established that the two viruses co-infect cassava and that incidences of co-infection could be as high as 50% around Lake Victoria on the Tanzanian side. Furthermore, it was revealed for the first time that both UCBSV and CBSV were widely distributed in Eastern Africa. The primer pair was also used to confirm infection in a close relative of cassava, Manihot glaziovii (Müller Arg.) with CBSV. DNA barcoding of M. glaziovii was done by sequencing the matK gene. Two out of seven M. glaziovii from the coastal areas of Korogwe and Kibaha in north eastern Tanzania were shown to be infected by CBSV but not UCBSV isolates. Detection in M. glaziovii has an implication in control and management of CBSD as it is likely to serve as virus reservoir. This study has contributed to the understanding of evolution of CBSV and UCBSV, which cause CBSD epidemic in Eastern Africa. The detection tools developed in this work will be useful in plant breeding, verification of the phytosanitary status of materials in regional and international movement of germplasm, and in all diagnostic activities related to management of CBSD. Whereas there are still many issues to be resolved such as the function and biological significance of HAM1h and its origin, this work has laid a foundation upon which the studies on these aspects can be based.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human-mediated movement of plants and plant products is now generally accepted to be the primary mode of introduction of plant pathogens. Species of the genus Phytophthora are commonly spread in this way and have caused severe epidemics in silviculture, horticulture as well as natural systems all over the world. The aims of the study were to gather information on the occurrence of Phytophthora spp. in Finnish nurseries, to produce information for risk assessments for these Phytophthora spp. by determining their host ranges and tolerance of cold temperatures, and to establish molecular means for their detection. Phytophthora cactorum was found to persist in natural waterbodies and results suggest that irrigation water might be a source of inoculum in nurseries. In addition to P. cactorum, isolates from ornamental nursery Rhododendron yielded three species new to Finland: P. ramorum, P. plurivora and P. pini. The only species with quarantine status, P. ramorum, was most adapted to growth in cold temperatures and able to persist in the nursery in spite of an annual sanitation protocol. Phytophthora plurivora and the closely related P. pini had more hosts among Nordic tree and plant species than P. ramorum and P. cactorum, and also had higher infectivity rates. All four species survived two weeks in -5 °C , and thus soil survival of these Phytophthoras in Finland is likely under current climatic conditions. The most common tree species in Finnish nurseries, Picea abies, was highly susceptible to P. plurivora and P. pini in pathogenicity trials. In a histological examination of P. plurivora in P. abies shoot tissues, fast necrotrophic growth was observed in nearly all tissues. The production of propagules in P. abies shoot tissue was only weakly indicated. In this study, a PCR DGGE technique was developed for simultaneous detection and identification of Phytophthora spp. It reliably detected Phytophthora in plant tissues and could discriminate most test species as well as indicate instances of multiple-species infections. It proved to be a useful detection and identification tool either applied alone or in concert with traditional isolation culture techniques. All of the introduced species of Phytophthora had properties that promote a high risk of establishment and spread in Finland. It is probable that more pathogens of this genus will be introduced and become established in Finland and other Nordic countries unless efficient phytosanitary control becomes standard practice in the international plant trade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), is a serious pest and pathogen of forest tree species, in particular among the genus Pinus. It was first reported from Japan in the beginning of the XXth century, where it became the major ecological catastrophe of pine forests, with losses reaching over 2 million m3/ year in the 1980s. It has since then spread to other Asian countries such as China, Taiwan and Korea, causing serious losses and economic damage. In 1999, the PWN was first detected in the European Union (EU), in Portugal, and immmediately prompted several government (national and EU) actions to assess the extent of the nematode’s presence, and to contain B. xylophilus and its insect vector (Monochamus galloprovincialis) to an area with a 30km radius in the Setúbal Peninsula, 20 km south of Lisbon. International wood trade, with its political as well as economic ramifications, has been seriously jeopardized. The origin of the population of PWN found in Portugal remains elusive. Several hypotheses may be considered regarding pathway analysis, basically from two general origins: North America or the Far East (Japan or China). World trade of wood products such as timber, wooden crates, palettes, etc… play an important role in the potential dissemination of the pinewood nematode. In fact, human activities involving the movement of wood products may be considered the single most important factor in spreading of the PWN. Despite the dedicated and concerted actions of government agencies, this disease continues to spread. Very recently (2006), in Portugal, forestry and phytosanitary authorities (DGRF and DGPC) have announced a new strategy for the control and ultimately the erradication of the nematode, under the coordination of the national program for the control of the pinewood nematode (PROLUNP). Research regarding the bioecology of the nematode and insect as well as new detection methods, e.g., involving real-time PCR, has progressed since 1999. International agreements (GATT, WTO) and sharing of scientific information is of paramount importance to effectively control the nematode and its vector, and thus protect our forest ecosystems and forest economy.