999 resultados para Phytophthora cinnamomi - Victoria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases in natural ecosystems are often assumed to be less severe than those observed in domestic cropping systems due to the extensive biodiversity exhibited in wild vegetation communities. In Australia, it is this natural biodiversity that is now under threat from Phytophthora cinnamomi. The soilborne Oomycete causes severe decline of native vegetation communities in south-western Victoria, Australia, disrupting the ecological balance of native forest and heathland communities. While the effect of disease caused by P. cinnamomi on native vegetation communities in Victoria has been extensively investigated, little work has focused on the Anglesea healthlands in south-western Victoria. Nothing is known about the population structure of P. cinnamomi at Anglesea. This project was divided into two main components to investigate fundamental issues affecting the management of P. cinnamomi in the Anglesea heathlands. The first component examined the phenotypic characteristics of P. cinnamomi isolates sampled from the population at Anglesea, and compared these with isolates from other regions in Victoria, and also from Western Australia. The second component of the project investigated the effect of the fungicide phosphonate on the host response following infection by P. cinnamomi. Following soil sampling in the Anglesea heathlands, a collection of P, cinnamomi isolates was established. Morphological and physiological traits of each isolate were examined. All isolates were found to be of the A2 mating type. Variation was demonstrated among isolates in the following characteristics: radial growth rate on various nutrient media, sporangial production, and sporangial dimensions. Oogonial dimensions did not differ significantly between isolates. Morphological and physiological variation was rarely dependant on isolate origin. To examine the genetic diversity among isolates and to determine whether phenotypic variation observed was genetically based, Random Amplified Polymorphic DNA (RAPD) analyses were conducted. No significant variation was observed among isolates based on an analysis of molecular variance (AMQVA). The results are discussed in relation to population biology, and the effect of genetic variation on population structure and population dynamics. X australis, an arborescent monocotyledon indigenous to Australia, is highly susceptible to infection by P. cinnamomi. It forms an important component of the heathland vegetation community, providing habitat for native flora and fauna, A cell suspension culture system was developed to investigate the effect of the fungicide phosphonate on the host-pathogen interaction between X. australis and P. cinnamomi. This allowed the interaction between the host and the pathogen to be examined at a cellular level. Subsequently, histological studies using X. australis seedlings were undertaken to support the cellular study. Observations in the cell culture system correlated well with those in the plant. The anatomical structure of X australis roots was examined to assist in the interpretation of results of histopathological studies. The infection of single cells and roots of X. australis, and the effect of phosphonate on the interaction are described. Phosphonate application prior to inoculation with P. cinnamomi reduced the infection of cells in culture and of cells in planta. In particular, phosphonate was found to stimulate the production of phenolic material in roots of X australis seedlings and in cells in suspension cultures. In phosphonate-treated roots of X australis seedlings, the deposition of electron dense material, possibly lignin or cellulose, was observed following infection with P. cinnamomi. It is proposed that this is a significant consequence of the stimulation of plant defence pathways by the fungicide. Results of the study are discussed in terms of the implications of the findings on management of the Anglesea heathlands in Victoria, taking into account variation in pathogen morphology, pathogenicity and genotype. The mode of action of phosphonate in the plant is discussed in relation to plant physiology and biochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytophthora cinnamomi (Cinnamon fungus) is a pathogenic soil fungus which infects plant communities along the south-eastern coast of Australia, and the south-western corner of Western Australia. The symptoms of this disease include chlorosis, death of branches (ie. ‘dieback’), retarded growth and the eventual death of infected plants. This leads to devastating effects upon plant communities by altering both the structural and floristic characteristics of these communities. Small mammal species are dependent on specific features of their habitat such as vegetation structure and floristics. This thesis investigated alterations to the habitat of the insectivorous marsupial mouse, Antechinus stuartii, due to the presence of P. cinnamomi. The study was undertaken in an area of an open forest in the Brisbane Ranges, Victoria. Significant changes were found in both the floristic composition and structure of the vegetation at study sites infected with P, cinnamomi, compared to uninfected sites. The habitat utilization by A. stuartii of uninfected and infected vegetation was investigated using live trapping and radio-telemetric techniques. Capture rates were higher at sites uninfected by P. cinnamomi, and both male and females selected areas free from infection. Home range areas of males were significantly larger than those of females as assessed by telemetry. Both sexes spent a high proportion of time in areas dominated by Xanthorrhoea australis (Austral grass tree). There were significant relationships between the abundance of A. stuartii and the denseness of vegetation above 1 metre in height, and in particular, the proportion of cover afforded by X. australis. There were no significant differences in the cover of Eucalyptus spp. between uninfected and infected sites, but there were significantly more nest hollows in infected areas. The abundance of invertebrates was examined using pitfall traps. There were no significant differences in the abundance of the larger invertebrate taxa at infected and uninfected sites, but higher abundances of some micro-invertebrate groups in infected areas were recorded. The most likely factors considered to be influential in the habitat selection of A. stuartii were vegetation structure, and the presence of X. australis. To assess whether these factors were important the leaves of X. australis were removed with a brushcutter, to mimic the early effects of infection with P. cinnamomi. Animals did not respond to the alteration of vegetation structure in the short term (3-4 days). Longer-term experiments are required to assess the habitat utilization of A. stuartii at different periods following habitat manipulation. The implications of the presence of P. cinnamomi on the conservation of fauna are discussed. The destructive nature of the pathogen, and the slow rate of recovery from the disease, means that P. cinnamomi can be considered a threatening process to plant communities and the fauna that reside within that habitat. Future management of this disease within natural areas must therefore be cognisant of the potential of P. cinnamomi to significantly affect faunal as well as vegetative communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plant pathogen, Phytophthora dnnamomi, is a cause of dieback disease observed in sclerophyll vegetation in Australia, The effects of P. dnnamomi on flora and fauna were studied at two locations in heathland vegetation near the coastal town of Anglesea, Victoria. The pathogen was isolated from soils beneath diseased heathland plants. The extent of diseased vegetation was assessed by the presence and absence of highly sensitive indicator species, Xanthorrhoea australis and hopogon ceratophyllus. The characteristics of heathland vegetation exhibiting dieback disease associated with the presence of P. dnnamomi were investigated. Plant species richness was similar between diseased and non-diseased areas however diseased areas were characterised by significant declines in the cover and frequency of susceptible species, increases in resistant species and increases in percent cover of open ground. Compared to non-diseased areas, diseased areas exhibited fewer shrub species and decreased shrub cover. The percentage cover and number of species of sedges, lilies and grasses were higher in diseased areas. Structural differences were significant between 0-0.6 m with decreased cover of vegetation in diseased areas. Differences in structure between diseased and non-diseased areas were not as great as expected due to increases in the cover of resistant species. A number of regenerating X australis were observed in post-disease areas. Cluster analysis of floristic data could clearly separate diseased and non-diseased trap stations. The population dynamics and habitat use of eight small mammal species present were compared in diseased and non-diseased areas using trapping and radio-tracking techniques. The number of small mammal species captured in post-disease areas was significantly lower than non-diseased areas. Mean captures of Antechinus stuartii and Rattus fiisdpes were significantly lower in diseased areas on Grid B. Mean captures of Rattus lutreolus were significantly lower in diseased areas on both study grids. Significant differences were not observed in every season over the two year study period. Radio tracking revealed more observations of Sminthopsis leucopus in non-diseased vegetation than in diseased. Cercartetus nanus was frequently observed to utilise the disease susceptible X. australis for nesting. At one location, the recovery of vegetation and small mammal communities in non-diseased and diseased vegetation after fuel reduction burning was monitored for three years post-fire. Return of plant species after fire in both disease classes were similar, reaching 75% of pre-fire richness after three years. Vegetation cover was slower to return after fire in diseased areas. Of the seven small mammal species captured pre-fire, five were regularly captured in the three years after fire. General linear model analysis revealed a significant influence of disease on capture rates for total small mammals before fire and a significant influence of fire on capture rates for total small mammals after fire. After three years, the influence of fire on capture rates was reduced no significant difference was detected between disease classes. Measurements of microclimate indicate that diseased, burnt heathland was likely to experience greater extremes of temperature and wind speed. Seeding of diseased heathland with X. australis resulted in the establishment of seedlings of this sensitive species. The reported distributions of the mamma] species in Victoria were analysed to determine which species were associated with the reported distribution of dieback disease. Twenty-two species have more than 20% of their known distribution in diseased areas. Five of these species, Pseudomys novaehollandiae, Pseudomys fumeust Pseudomys shortridgei, Potorous longipes and Petrogale pencillata are rare or endangered in Victoria. Four of the twenty-two species, Sminthopsis leucopus, Isoodon obesulus, Cercartetus nanus and Rottus lutreolus am observed in Victorian heathlands. Phytophthora cinnamomi changes both the structure and floristics of heathland vegetation in the eastern Qtway Ranges. Small mammals respond to these changes through decreased utilisation of diseased heathland. The pathogen threatens the diversity of species present and future research efforts should be directed towards limiting its spread and rehabilitating diseased areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major aims of the research presented in this thesis was to assist managers of native vegetation communities in southeastern Australia in understanding the dynamics of P. cinnamomi with an important ecological species, Xanthorrhoea australis. It trialed the use of phosphite in large-scale field applications to establish the usefulness of this management option for the first time on Victorian flora. This thesis describes the process of disease development within mature X. Australia plants. For the first time it was shown that within X. australis plants, secondary disease symptoms are related to the percentage of stem that has been infested by the disease. It was evident that after initial invasion the pathogen moves via root xylem and throughout the plant within vascular to the stem, especially within the desmium. The research shows that the pathogen could not be isolated consistently even though it was considered to be responsible for disease symptoms. Trials of a control fungicide (Foli-R-fos 200) shows that protection occurs in many susceptible plants when 2 and 6g a.i./L phosphite is applied. Phytotoxicity occurred in native plants at Anglesea and within controlled environment trials when using ≥ 6g a.i./L. It will be shown that 2g a.i./L phosphite controls disease in sprayed plots within heathlands at Anglesea and a recently burnt coastal woodland community at Wilson’s Promontory. The proportion of healthy X. australis plants treated with phosphite was significantly higher than the proportion in control plots without phosphite. The research shows that phosphite was recovered from leaves of three species treated with Foli-R-fos 200 in the field. For the first time it has been shown that seed germination was reduced in two species when high concentrations of phosphite were applied. The first documentation of the effect that phosphite has on soil properties showed that nitrogen and oxidised organic carbon were the only parameters to alter significantly. This thesis provides answers to some important questions, answers that can now be used by managers in formulating better policies and actions at an operational level. There has been a dire need in Victoria to address many issues regarding P. cinnamomi and this thesis provides relevant and informative approaches to disease control, and a better understanding of the disease progress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progression of disease caused by the plant pathogen Phytophthora cinnamomi was correlated to rainfall events and resulted in a loss of plant species diversity in heathland vegetation at Anglesea, Victoria. Lower captures of small mammals were recorded in diseased areas. Management of disease using the chemical phosphite was also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The floristics and structure of heathland vegetation exhibiting symptoms of Phytophthora cinnamomi Rands infestation was assessed at two sites in heathlands at Anglesea, Victoria. There were significant effects in both floristics and structure. Thirteen heathland species were significantly less abundant in diseased areas and 23 species were more abundant. Diseased (infested) vegetation, when compared with non-diseased areas, had less cover of Xanthorrhoea australis and shrub species and a greater cover of sedges, grasses and open ground. Structural differences were observed between heights 0 and 0.6 m, with a decline in cover recorded in diseased vegetation. Non-metric multidimensional scaling ordination of the floristic data showed a clear separation of diseased and non-diseased vegetation and that changes in floristic composition post-infestation were similar at both sites. Although there was some evidence of regeneration of X. australis, the recovery capacity of other susceptible species at Anglesea is unknown. The long-term consequences of loss of species and structure in the eastern Otways mean that the vegetation is unlikely to return to former status, especially if the pathogen continues to reinfect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disease caused by the soilborne plant pathogen Phytophthora cinnamomi causes long-term floristic and structural changes in native vegetation communities in Australia. Key components of the management of this disease are to know where it occurs and the rate at which it spreads. The distribution of P. cinnamomi has generally been assessed as locality points of infestation and mapping the extent of diseased vegetation in any area is difficult and costly. This study was undertaken in P. cinnamomi-infested heathland communities in southern Victoria, Australia, where the symptoms of P. cinnamomi arise as a mosaic within healthy vegetation. We investigated the potential to improve the efficiency and effectiveness of mapping and monitoring vegetation affected by P. cinnamomi using digital multi-spectral imaging. This technique was developed for the purposes of monitoring vegetation and provides a single, seamless ortho-rectified digital image over the total area of interest. It is used to spatially quantify small differences in the characteristics of vegetation. In this study, the symptoms of disease caused by P. cinnamomi infestation were related to differences in the imagery and were used to map areas of infestation. Comparison of the digital multi-spectral imaging indications with on-ground observations gave moderate accuracy between the datasets (κ = 0.49) for disease and healthy indications. This study demonstrates the ability of the technique to determine disease extent over broad areas in native vegetation and provides a non-invasive, cost effective tool for management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology has often been used as an indicator of variability within species. The present study investigated morphological and physiological characteristics of isolates of Phytophthora cinnamomi collected from diseased vegetation communities at Anglesea, Victoria, and isolates collected from other regions in the State. Characteristics studied included growth rate on potato-dextrose agar (PDA), corn-meal agar and V8-juice agar at 24°C, growth rate on V8 agar at 15°C, colony morphology on PDA, sporangial and gametangial morphology, sporangial production and mating type. Phenotypic variation was demonstrated in radial growth rate, colony morphology and sporangial dimensions. Sporangial and oogonial dimensions and sporangial production were not significantly different between isolates from different geographical regions. All isolates were found to be of the A2 mating type suggesting variation was derived asexually. Paragynal associations, in an organism characteristically defined as amphigynal, were observed following crossing with A1 isolates. This is the first such study undertaken in southern Victoria. The findings highlight the importance of appropriate management of an area of such high conservation value as the Anglesea Heath to contain the current infection and to prevent introduction of new isolates into the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytophthora cinnamomi is a soil borne plant pathogen that causes devastating disease in many Australian ecosystems and threatens the survival of native flora. Compared with the number of plant species that are susceptible to P. cinnamomi, only a few species are known to be resistant and control of this pathogen by chemicals is difficult and undesirable in natural systems. The major aim of our research is therefore to characterise natural resistance and determine which signalling pathways and defence responses are involved. Our examination of resistance is being approached at several levels, one of which is through the use of the model plant, Arabidopsis. Previously, Arabidopsis had been shown to display ecotypic variation in responses to P. cinnamomi and we are exploring this further in conjunction with the analysis of a bank of Arabidopsis defence pathway mutants for their responses to the pathogen. These experiments will provide a fundamental basis for further analysis of the defence responses of native plants. Native species (susceptible and resistant) are being assessed for their responses to P. cinnamomi at morphological, biochemical and molecular levels. This research also involves field-based studies of plants under challenge at various sites throughout Victoria, Australia. The focus of this field-based research is to assess the responses of individual species to P. cinnamomi in the natural environment with the goal of identifying individuals within susceptible species that display 'resistance'. Understanding how plants are able to resist this pathogen will enable strategies to be developed to enhance species survival and to restore structure and biodiversity to the ecosystems under threat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytophthora cinnamomi continues to cause devastating disease in Australian native vegetation and consequently the disease is listed by the Federal Government as a process that is threatening Australia’s biodiversity. Although several advances have been made in our understanding of how this soil-borne pathogen interacts with plants and of how we may tackle it in natural systems, our ability to control the disease is limited. The pathogen occurs widely across Australia but the severity of its impact is most evident within ecological communities of the south-west and south-east of the country. A regional impact summary for all states and territories shows the pathogen to be the cause of serious disease in numerous species, a significant number of which are rare and threatened. Many genera of endemic taxa have a high proportion of susceptible species including the iconic genera Banksia, Epacris and Xanthorrhoea. Long-term studies in Victoria have shown limited but probably unsustainable recovery of susceptible vegetation, given current management practices. Management of the disease in conservation reserves is reliant on hygiene, the use of chemicals and restriction of access, and has had only limited effectiveness and not provided complete control. The deleterious impacts of the disease on faunal habitat are reasonably well documented and demonstrate loss of individual animal species and changes in population structure and species abundance. Few plant species are known to be resistant to P. cinnamomi; however, investigations over several years have discovered the mechanisms by which some plants are able to survive infection, including the activation of defence-related genes and signalling pathways, the reinforcement of cell walls and accumulation of toxic metabolites. Manipulation of resistance and resistance-related mechanisms may provide avenues for protection against disease in otherwise susceptible species. Despite the advances made in Phytophthora research in Australia during the past 40 years, there is still much to be done to give land managers the resources to combat this disease. Recent State and Federal initiatives offer the prospect of a growing and broader awareness of the disease and its associated impacts. However, awareness must be translated into action as time is running out for the large number of susceptible, and potentially susceptible, species within vulnerable Australian ecological communities.