888 resultados para Phytic Acid -- metabolism
Resumo:
Background: Myo-inositol hexaphosphate (IP6) or phytic acid is found mostly in cereals and legumes and is thought to possess anti-carcinogenic properties. Aim: To isolate and identify faecal bacteria capable of phytic acid metabolism and to assess the effectiveness of prebiotics (dietary oligosaccharides, metabolised by selective colonic bacteria) in preserving the integrity of phytic acid. Methods: Faecal samples from three volunteers were used in continuous culture experiments under varying conditions of pH, substrate concentration and dilution rates, seventy three different isolates cultured at steady state were then screened for phytic acid metabolism and identified through partial sequencing of their 16S rRNA genes (16S ribosomal ribonucleic acid). Utilisation of phytic acid was also assessed in a continuous culture system enriched with prebiotic fructooligosaccharides (FOS). Results: Bacteroides spp., Clostridium spp. and facultatively anaerobic bacteria generally appeared to maintain viable counts in the presence of phytic acid. Bifidobacterium spp. and Lactobacillus spp. appeared less able to maintain viable counts in the presence of phytic acid. These results were confirmed by an increase in viable counts of Bacteroides spp., Clostridium spp. and a decrease in viable counts of Bifidobacterium spp. and Lactobacillus spp. once phytic acid was introduced to a FOS enriched continuous culture. Conclusions: The phytate metabolising biodiversity from the human large intestine does not appear to encompass major bacterial genera associated with beneficial or benign health effects (e.g. Lactobacillus spp. and Bifidobacterium spp).
Resumo:
BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.
Resumo:
Most meningiomas are benign tumours of arachnoidal origin, although a small number have high proliferative rates and invasive properties which complicate complete surgical resection and are associated with increased recurrence rates. Few prognostic indicators exist for meningiomas and further research is necessary to identify factors that influence tumour invasion, oedema and recurrence. Paraffin sections from 25 intracranial meningiomas were analysed for expression of the proteins vascular endothelial growth factor (VEGF), VEGF receptors Flt1 and Flk1, E-cadherin, metalloproteinases 2 and 9 (MMP2, MMP9), CD44, receptor for hyaluronic acid-mediated motility (RHAMM), hyaluronic acid (HA), CD45, cyclooxygenase 2 (COX2), brain fatty acid binding protein (BFABP), Ki67, and proliferating cell nuclear antigen (PCNA). Correlations among protein expression were found for several markers of proliferation (Ki67, PCNA, MI) and microvessel density (MVD). COX2 expression increased with increasing with tumour grade and correlated with Ki67, PCNA, MI, MVD, and BFABP. BFABP expression also correlated with Ki67 and PCNA expression. Relationships were also identified among angiogenic factors (VEGF, Flt1, Flk1) and proliferation markers. Oedema was found to correlate with MMP9 expression and MMP9 also correlated with proliferation markers. No correlations were found for MMP2, E-cadherin, or CD44 in meningiomas. In conclusion Ki67, PCNA, MI, MVD, BFABP, and COX2 were significantly correlated with meningioma tumour grade and with each other. These findings, by correlating both intracellular fatty acid transport and eicosanoid metabolism with tumour proliferation, as determined by Ki67 labelling and mitotic index, suggest fatty acids are involved in the progression of meningiomas.
Resumo:
Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.
Resumo:
OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.
Resumo:
To produce agronomically competitive rice with nutritionally superior, environmentally safe phytic acid (PA) levels, hairpin RNA (hpRNA)- and artificial microRNA (amiRNA)-mediated gene silencing approaches were explored to reduce both myo-inositol kinase gene (OsMIK) expression and PA accumulation in rice seeds. hpRNA and amiRNA sequences targeted to OsMIK (hpMIK and amiMIK), under the control of a rice Ole18 promoter, were transformed into the rice cultivar Nippon-bare. Fourteen and 21 independent transgenic events were identified containing the hpMIK and amiMIK constructs, respectively, from which five stable homozygous transgenic lines of each were developed together with their null siblings. Southern blotting demonstrated transgene integration into the genome and quantitative real-time PCR showed that gene silencing was restricted to seeds. OsMIK transcripts were significantly reduced in both transgenic amiMIK and hpMIK seeds, which had PA levels reduced by 14.9-50.2 and 38.1-50.7 %, respectively, compared with their respective null siblings. There were no systematic significant differences in agronomic traits between the transgenic lines and their non-transgenic siblings, and no correlation between seed PA contents and decreased rates of seed germination and seedling emergence. The results of the present study suggest that Ole 18-driven OsMIK silencing via hpRNA and amiRNA could be an effective way to develop agronomically competitive low phytic acid rice.
Resumo:
The peroxisome proliferator-activated receptor alpha is a ligand-activated transcription factor that plays an important role in the regulation of lipid homeostasis. PPARalpha mediates the effects of fibrates, which are potent hypolipidemic drugs, on gene expression. To better understand the biological effects of fibrates and PPARalpha, we searched for genes regulated by PPARalpha using oligonucleotide microarray and subtractive hybridization. By comparing liver RNA from wild-type and PPARalpha null mice, it was found that PPARalpha decreases the mRNA expression of enzymes involved in the metabolism of amino acids. Further analysis by Northern blot revealed that PPARalpha influences the expression of several genes involved in trans- and deamination of amino acids, and urea synthesis. Direct activation of PPARalpha using the synthetic PPARalpha ligand WY14643 decreased mRNA levels of these genes, suggesting that PPARalpha is directly implicated in the regulation of their expression. Consistent with these data, plasma urea concentrations are modulated by PPARalpha in vivo. It is concluded that in addition to oxidation of fatty acids, PPARalpha also regulates metabolism of amino acids in liver, indicating that PPARalpha is a key controller of intermediary metabolism during fasting.
Resumo:
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.
Resumo:
BACKGROUND Animal model studies have shown that the colon tumour promoting effect of dietary fat depends not only on the amount but on its fatty acid composition. With respect to this, the effect of n9 fatty acids, present in olive oil, on colon carcinogenesis has been scarcely investigated. AIMS To assess the effect of an n9 fat diet on precancer events, carcinoma development, and changes in mucosal fatty acid composition and prostaglandin (PG)E2 formation in male Sprague-Dawley rats with azoxymethane induced colon cancer. METHODS Rats were divided into three groups to receive isocaloric diets (5% of the energy as fat) rich in n9, n3, or n6 fat, and were administered azoxymethane subcutaneously once a week for 11 weeks at a dose rate of 7.4 mg/kg body weight. Vehicle treated groups received an equal volume of normal saline. Groups of animals were colectomised at weeks 12 and 19 after the first dose of azoxymethane or saline. Mucosal fatty acids were assessed at 12 and 19 weeks. Aberrant crypt foci and the in vivo intracolonic release of PGE2 were assessed at week 12, and tumour formation at week 19. RESULTS Rats on the n6 diet were found to have colonic aberrant crypt foci and adenocarcinomas more often than those consuming either the n9 or n3 diet. There were no differences between the rats on the n9 and n3 diets. On the other hand, administration of both n9 and n3 diets was associated with a decrease in mucosal arachidonate concentrations as compared with the n6 diet. Carcinogen treatment induced an appreciable increase in PGE2 formation in rats fed the n6 diet, but not in those fed the n3 and n9 diets. CONCLUSIONS Dietary olive oil prevented the development of aberrant crypt foci and colon carcinomas in rats, suggesting that olive oil may have chemopreventive activity against colon carcinogenesis. These effects may be partly due to modulation of arachidonic acid metabolism and local PGE2synthesis.
Resumo:
Phytic acid (PA) is poorly digested by humans and monogastric animals and negatively affects human/animal nutrition and the environment. Rice mutants with reduced PA content have been developed but are often associated with reduced seed weight and viability, lacking breeding value. In the present study, a new approach was explored to reduce seed PA while attaining competitive yield. The OsMRP5 gene, of which mutations are known to reduce seed PA as well as seed yield and viability, was down-regulated specifically in rice seeds by using an artificial microRNA driven by the rice seed specific promoter Ole18. Seed PA contents were reduced by 35.8-71.9% in brown rice grains of transgenic plants compared to their respective null plants (non-transgenic plants derived from the same event). No consistent significant differences of plant height or number of tillers per plant were observed, but significantly lower seed weights (up to 17.8% reduction) were detected in all transgenic lines compared to null plants, accompanied by reductions of seed germination and seedling emergence. It was observed that the silencing of the OsMRP5 gene increased the inorganic P (Pi) levels (up to 7.5 times) in amounts more than the reduction of PA-P in brown rice. This indicates a reduction in P content in other cellular compounds, such as lipids and nucleic acids, which may affect overall seed development. Put together, the present study demonstrated that seed specific silencing of OsMRP5 could significantly reduce the PA content and increase Pi levels in seeds; however, it also significantly lowers seed weight in rice. Discussions were made regarding future directions towards producing agronomically competitive and nutritionally valuable low PA rice.
Resumo:
Background Fatty acid synthase (FASN) is overexpressed and hyperactivated in several human carcinomas, including lung cancer. We characterize and compare the anti-cancer effects of the FASN inhibitors C75 and (−)-epigallocatechin-3-gallate (EGCG) in a lung cancer model. Methods We evaluated in vitro the effects of C75 and EGCG on fatty acid metabolism (FASN and CPT enzymes), cellular proliferation, apoptosis and cell signaling (EGFR, ERK1/2, AKT and mTOR) in human A549 lung carcinoma cells. In vivo, we evaluated their anti-tumour activity and their effect on body weight in a mice model of human adenocarcinoma xenograft. Results C75 and EGCG had comparable effects in blocking FASN activity (96,9% and 89,3% of inhibition, respectively). In contrast, EGCG had either no significant effect in CPT activity, the rate-limiting enzyme of fatty acid β-oxidation, while C75 stimulated CPT up to 130%. Treating lung cancer cells with EGCG or C75 induced apoptosis and affected EGFR-signaling. While EGCG abolished p-EGFR, p-AKT, p-ERK1/2 and p-mTOR, C75 was less active in decreasing the levels of EGFR and p-AKT. In vivo, EGCG and C75 blocked the growth of lung cancer xenografts but C75 treatment, not EGCG, caused a marked animal weight loss. Conclusions In lung cancer, inhibition of FASN using EGCG can be achieved without parallel stimulation of fatty acid oxidation and this effect is related mainly to EGFR signaling pathway. EGCG reduce the growth of adenocarcinoma human lung cancer xenografts without inducing body weight loss. Taken together, EGCG may be a candidate for future pre-clinical development.
Resumo:
Saccharomyces cerevisiae cells contain three omega-class glutathione transferases with glutaredoxin activity (Gto1, Gto2, and Gto3), in addition to two glutathione transferases (Gtt1 and Gtt2) not classifiable into standard classes. Gto1 is located at the peroxisomes, where it is targeted through a PTS1-type sequence, whereas Gto2 and Gto3 are in the cytosol. Among the GTO genes, GTO2 shows the strongest induction of expression by agents such as diamide, 1-chloro-2,4-dinitrobenzene, tert-butyl hydroperoxide or cadmium, in a manner that is dependent on transcriptional factors Yap1 and/or Msn2/4. Diamide and 1-chloro-2,4-dinitrobenzene (causing depletion of reduced glutathione) also induce expression of GTO1 over basal levels. Phenotypic analyses with single and multiple mutants in the S. cerevisiae glutathione transferase genes show that, in the absence of Gto1 and the two Gtt proteins, cells display increased sensitivity to cadmium. A gto1-null mutant also shows growth defects on oleic acid-based medium, which is indicative of abnormal peroxisomal functions, and altered expression of genes related to sulfur amino acid metabolism. As a consequence, growth of the gto1 mutant is delayed in growth medium without lysine, serine, or threonine, and the mutant cells have low levels of reduced glutathione. The role of Gto1 at the S. cerevisiae peroxisomes could be related to the redox regulation of the Str3 cystathionine -lyase protein. This protein is also located at the peroxisomes in S. cerevisiae, where it is involved in transulfuration of cysteine into homocysteine, and requires a conserved cysteine residue for its biological activity.
Resumo:
Crassulacean acid metabolism (CAM) photosynthesis is an adaptation to water and atmospheric CO2 deficits that has been linked to diversification in dry-adapted plants. We investigated whether CAM evolution can be associated with the availability of new or alternative niches, using Eulophiinae orchids as a case study. Carbon isotope ratios, geographical and climate data, fossil records and DNA sequences were used to: assess the prevalence of CAM in Eulophiinae orchids; characterize the ecological niche of extant taxa; infer divergence times; and estimate whether CAM is associated with niche shifts. CAM evolved in four terrestrial lineages during the late Miocene/Pliocene, which have uneven diversification patterns. These lineages originated in humid habitats and colonized dry/seasonally dry environments in Africa and Madagascar. Additional key features (variegation, heterophylly) evolved in the most species-rich CAM lineages. Dry habitats were also colonized by a lineage that includes putative mycoheterotrophic taxa. These findings indicate that the switch to CAM is associated with environmental change. With its suite of adaptive traits, this group of orchids represents a unique opportunity to study the adaptations to dry environments, especially in the face of projected global aridification.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.