908 resultados para Physiological Hypertrophy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Catecholamines and alpha(1)-adrenergic receptors (alpha(1)-ARs) cause cardiac hypertrophy in cultured myocytes and transgenic mice, but heart size is normal in single KOs of the main alpha(1)-AR subtypes, alpha(1A/C) and alpha(1B). Here we tested whether alpha(1)-ARs are required for developmental cardiac hypertrophy by generating alpha(1A/C) and alpha(1B) double KO (ABKO) mice, which had no cardiac alpha(1)-AR binding. In male ABKO mice, heart growth after weaning was 40% less than in WT, and the smaller heart was due to smaller myocytes. Body and other organ weights were unchanged, indicating a specific effect on the heart. Blood pressure in ABKO mice was the same as in WT, showing that the smaller heart was not due to decreased load. Contractile function was normal by echocardiography in awake mice, but the smaller heart and a slower heart rate reduced cardiac output. alpha(1)-AR stimulation did not activate extracellular signal-regulated kinase (Erk) and downstream kinases in ABKO myocytes, and basal Erk activity was lower in the intact ABKO heart. In female ABKO mice, heart size was normal, even after ovariectomy. Male ABKO mice had reduced exercise capacity and increased mortality with pressure overload. Thus, alpha(1)-ARs in male mice are required for the physiological hypertrophy of normal postnatal cardiac development and for an adaptive response to cardiac stress.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%). Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58%) only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25%) and myocyte dimension (13-20%) increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kallikrein-kinin system exerts cardioprotective effects against pathological hypertrophy. These effects are modulated mainly via B(2) receptor activation. Chronic physical exercise can induce physiological cardiac hypertrophy characterized by normal organization of cardiac structure. Therefore, the aim of this work was to verify the influence of kinin B(2) receptor deletion on physiological hypertrophy to exercise stimulus. Animals were submitted to swimming practice for 5 min or for 60 min, 5 days a week, during 1 month and several cardiac parameters were evaluated. Results showed no significantly difference in heart weight between both groups, however an increased left ventricle weight and myocyte diameter were observed after the 60 min swimming protocol, which was more pronounced in B(2)(-/-) mice. In addition, sedentary B(2)(-/-) animals presented higher left ventricle mass when compared to wild-type (WT) mice. An increase in capillary density was observed in exercised animals, however the effect was less pronounced in B(2)(-/-) mice. Collagen, a marker of pathological hypertrophy, was increased in B(2)(-/-) mice submitted to swimming protocol, as well as left ventricular thickness, suggesting that these animals do not respond with physiological hypertrophy for this kind of exercise. In conclusion, our data suggest an important role for the kinin B(2) receptor in physiological cardiac hypertrophy. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiomyocyte hypertrophy occurs in response to a variety of physiological and pathological stimuli. While pathological hypertrophy in heart failure is usually coupled with depressed contractile function, physiological hypertrophy associates with increased contractility. In the present study, we explored whether 8 weeks of moderate intensity exercise training would lead to a cardiac anti-remodelling effect in an experimental model of heart failure associated with a deactivation of a pathological (calcineurin/NFAT, CaMKII/HDAC) or activation of a physiological (Akt-mTOR) hypertrophy signalling pathway. The cardiac dysfunction, exercise intolerance, left ventricle dilatation, increased heart weight and cardiomyocyte hypertrophy from mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO mice) were associated with sympathetic hyperactivity induced heart failure. The relative contribution of Ca(2+)-calmodulin high-affinity (calcineurin/NFAT) and low-affinity (CaMKII/HDAC) targets to pathological hypertrophy of alpha(2A)/alpha(2C)ARKO mice was verified. While nuclear calcineurin B, NFATc3 and GATA-4 translocation were significantly increased in alpha(2A)/alpha(2C)ARKO mice, no changes were observed in CaMKII/HDAC activation. As expected, cyclosporine treatment decreased nuclear translocation of calcineurin/NFAT in alpha(2A)/alpha(2C)ARKO mice, which was associated with improved ventricular function and a pronounced anti-remodelling effect. The Akt/mTOR signalling pathway was not activated in alpha(2A)/alpha(2C)ARKO mice. Exercise training improved cardiac function and exercise capacity in alpha(2A)/alpha(2C)ARKO mice and decreased heart weight and cardiomyocyte width paralleled by diminished nuclear NFATc3 and GATA-4 translocation as well as GATA-4 expression levels. When combined, these findings support the notion that deactivation of calcineurin/NFAT pathway-induced pathological hypertrophy is a preferential mechanism by which exercise training leads to the cardiac anti-remodelling effect in heart failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endurance exercise is widely assumed to improve cardiac function in humans. This project has determined cardiac function following endurance exercise for 6 (n = 30) or 12 ( n = 25) weeks in male Wistar rats (8 weeks old). The exercise protocol was 30 min/day at 0.8 km/h for 5 days/week with an endurance test on the 6th day by running at 1.2 km/h until exhaustion. Exercise endurance increased by 318% after 6 weeks and 609% after 12 weeks. Heart weight/kg body weight increased by 10.2% after 6 weeks and 24.1% after 12 weeks. Echocardiography after 12 weeks showed increases in left ventricular internal diameter in diastole (6.39 +/- 0.32 to 7.90 +/- 0.17 mm), systolic volume (49 +/- 7 to 83 +/- 11 mul) and cardiac output (75 +/- 3 to 107 +/- 8 ml/min) but not left wall thickness in diastole (1.74 +/- 0.07 to 1.80 +/- 0.06 mm). Isolated Langendorff hearts from trained rats displayed decreased left ventricular myocardial stiffness (22 +/- 1.1 to 19.1 +/- 0.3) and reduced purine efflux during pacing-induced workload increases. P-31-NMR spectroscopy in isolated hearts from trained rats showed decreased PCr and PCr/ATP ratios with increased creatine, AMP and ADP concentrations. Thus, this endurance exercise protocol resulted in physiological hypertrophy while maintaining or improving cardiac function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIM It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (αCGRP), known to be released from contracting skeletal muscles, is key at this remodelling. METHODS The hypertrophic effect of αCGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. RESULTS While αCGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP(-/-) mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors (CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in αCGRP(-/-) mice and elevated in CLR-tg. Transcriptional changes seen in αCGRP(-/-) (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. CONCLUSIONS Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, αCGRP agonists might be beneficial in heart failure patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerobic exercise training leads to a physiological, nonpathological left ventricular hypertrophy; however, the underlying biochemical and molecular mechanisms of physiological left ventricular hypertrophy are unknown. The role of microRNAs regulating the classic and the novel cardiac renin-angiotensin (Ang) system was studied in trained rats assigned to 3 groups: (1) sedentary; (2) swimming trained with protocol 1 (T1, moderate-volume training); and (3) protocol 2 (T2, high-volume training). Cardiac Ang I levels, Ang-converting enzyme (ACE) activity, and protein expression, as well as Ang II levels, were lower in T1 and T2; however, Ang II type 1 receptor mRNA levels (69% in T1 and 99% in T2) and protein expression (240% in T1 and 300% in T2) increased after training. Ang II type 2 receptor mRNA levels (220%) and protein expression (332%) were shown to be increased in T2. In addition, T1 and T2 were shown to increase ACE2 activity and protein expression and Ang (1-7) levels in the heart. Exercise increased microRNA-27a and 27b, targeting ACE and decreasing microRNA-143 targeting ACE2 in the heart. Left ventricular hypertrophy induced by aerobic training involves microRNA regulation and an increase in cardiac Ang II type 1 receptor without the participation of Ang II. Parallel to this, an increase in ACE2, Ang (1-7), and Ang II type 2 receptor in the heart by exercise suggests that this nonclassic cardiac renin-angiotensin system counteracts the classic cardiac renin-angiotensin system. These findings are consistent with a model in which exercise may induce left ventricular hypertrophy, at least in part, altering the expression of specific microRNAs targeting renin-angiotensin system genes. Together these effects might provide the additional aerobic capacity required by the exercised heart. (Hypertension. 2011;58:182-189.).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance training is accompanied by cardiac hypertrophy, but the role of the renin-angiotensin system (RAS) in this response is elusive. We evaluated this question in 36 male Wistar rats divided into six groups: control (n = 6); trained (n = 6); control + losartan (10 mg.kg(-1).day(-1), n = 6); trained + losartan (n = 6); control + high-salt diet (1%, n = 6); and trained + high-salt diet (1%, n = 6). High salt was used to inhibit the systemic RAS and losartan to block the AT(1) receptor. The exercise protocol consisted of: 4 x 12 bouts, 5x/wk during 8 wk, with 65-75% of one repetition maximum. Left ventricle weight-to-body weight ratio increased only in trained and trained + high-salt diet groups (8.5% and 10.6%, P < 0.05) compared with control. Also, none of the pathological cardiac hypertrophy markers, atrial natriuretic peptide, and alpha MHC (alpha-myosin heavy chain)-to-beta MHC ratio, were changed. ACE activity was analyzed by fluorometric assay (systemic and cardiac) and plasma renin activity (PRA) by RIA and remained unchanged upon resistance training, whereas PRA decreased significantly with the high-salt diet. Interestingly, using Western blot analysis and RT-PRC, no changes were observed in cardiac AT(2) receptor levels, whereas the AT(1) receptor gene (56%, P < 0.05) and protein (31%, P < 0.05) expressions were upregulated in the trained group. Also, cardiac ANG II concentration evaluated by ELISA remained unchanged (23.27 +/- 2.4 vs. 22.01 +/- 0.8 pg/mg, P > 0.05). Administration of a subhypotensive dose of losartan prevented left ventricle hypertrophy in response to the resistance training. Altogether, we provide evidence that resistance training-induced cardiac hypertrophy is accompanied by induction of AT(1) receptor expression with no changes in cardiac ANG II, which suggests a local activation of the RAS consistent with the hypertrophic response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. This study addressed the role of the local renin-angiotensin system (RAS) in the left ventriular hypertropy (LVH) induced by swimming training using pharmacological blockade. Materials and methods. Female Wistar rats treated with enalapril maleate (60 mg.kg(-1).d(-1), n = 38), losartan (20 mg.kg(-1).d(-1), n = 36) or high salt diet (1% NaCl, n = 38) were trained by two protocols (T1: 60-min swimming session, 5 days per week for 10 weeks and T2: the same T1 protocol until the 8(th) week, then 9(th) week they trained twice a day and 10(th) week they trained three times a day). Salt loading prevented activation of the systemic RAS. Haemodynamic parameters, soleus citrate synthase (SCS) activity and LVH (left ventricular/body weight ratio, mg/g) were evaluated. Results. Resting heart rate decreased in all trained groups. SCS activity increased 41% and 106% in T1 and T2 groups, respectively. LVH was 20% and 30% in T1 and T2 groups, respectively. Enalapril prevented 39% of the LVH in T2 group (p < 0.05). Losartan prevented 41% in T1 and 50% in T2 (P < 0.05) of the LVH in trained groups. Plasma renin activity (PRA) was inhibited in all salt groups and it was increased in T2 group. Conclusions. These data provide evidence that the physiological LVH induced by swimming training is regulated by local RAS independent from the systemic, because the hypertrophic response was maintained even when PRA was inhibited by chronic salt loading. However, other systems can contribute to this process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chronic mild stress (CMS) model has been used as an animal model of depression which induces anhedonic behavior in rodents. The present study was aimed to evaluate the behavioral and physiological effects of administration of P-carboline harmine in rats exposed to CMS Procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days. In this study, sweet food consumption, adrenal gland weight, adrenocorticotrophin hormone (ACTH) levels, and hippocampal brain-derived-neurotrophic factor (BDNF) protein levels were assessed. Our findings demonstrated that chronic stressful situations induced anhedonia, hypertrophy of adrenal gland weight, increase ACTH circulating levels in rats and increase BDNF protein levels. Interestingly, treatment with harmine reversed anhedonia, the increase of adrenal gland weight, normalized ACTH circulating levels and BDNF protein levels. Finally, these findings further support the hypothesis that harmine could be a new pharmacological tool for the treatment of depression. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate left ventricular mass (LVM) index in hypertensive and normotensive obese individuals. METHODS: Using M mode echocardiography, 544 essential hypertensive and 106 normotensive patients were evaluated, and LVM was indexed for body surface area (LVM/BSA) and for height² (LVM/h²). The 2 indexes were then compared in both populations, in subgroups stratified according to body mass index (BMI): <27; 27-30; > or = 30kg/m². RESULTS: The BSA index does not allow identification of significant differences between BMI subgroups. Indexing by height² provides significantly increased values for high BMI subgroups in normotensive and hypertensive populations. CONCLUSION: Left ventricular hypertrophy (LVH) has been underestimated in the obese with the use of LVM/BSA because this index considers obesity as a physiological variable. Indexing by height² allows differences between BMI subgroups to become apparent and seems to be more appropriate for detecting LVH in obese populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: In addition to its haemodynamic effects, angiotensin II (AngII) is thought to contribute to the development of cardiac hypertrophy via its growth factor properties. The activation of mitogen-activated protein kinases (MAPK) is crucial for stimulating cardiac growth. Therefore, the present study aimed to determine whether the trophic effects of AngII and the AngII-induced haemodynamic load were associated with specific cardiac MAPK pathways during the development of hypertrophy. Methods The activation of the extracellular-signal-regulated kinase (ERK), the c-jun N-terminal kinase (JNK) and the p38 kinase was followed in the heart of normotensive and hypertensive transgenic mice with AngII-mediated cardiac hypertrophy. Secondly, we used physiological models of AngII-dependent and AngII-independent renovascular hypertension to study the activation of cardiac MAPK pathways during the development of hypertrophy. RESULTS: In normotensive transgenic animals with AngII-induced cardiac hypertrophy, p38 activation is associated with the development of hypertrophy while ERK and JNK are modestly stimulated. In hypertensive transgenic mice, further activation of ERK and JNK is observed. Moreover, in the AngII-independent model of renovascular hypertension and cardiac hypertrophy, p38 is not activated while ERK and JNK are strongly stimulated. In contrast, in the AngII-dependent model, all three kinases are stimulated. CONCLUSIONS: These data suggest that p38 activation is preferentially associated with the direct effects of AngII on cardiac cells, whereas stimulation of ERK and JNK occurs in association with AngII-induced mechanical stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.