898 resultados para Physics of the Early Universe


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis deals with some aspects of the Physics of the early universe, like phase transitions, bubble nucleations and premodial density perturbations which lead to the formation structures in the universe. Quantum aspects of the gravitational interaction play an essential role in retical high-energy physics. The questions of the quantum gravity are naturally connected with early universe and Grand Unification Theories. In spite of numerous efforts, the various problems of quantum gravity remain still unsolved. In this condition, the consideration of different quantum gravity models is an inevitable stage to study the quantum aspects of gravitational interaction. The important role of gravitationally coupled scalar field in the physics of the early universe is discussed in this thesis. The study shows that the scalar-gravitational coupling and the scalar curvature did play a crucial role in determining the nature of phase transitions that took place in the early universe. The key idea in studying the formation structure in the universe is that of gravitational instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, we live in an era characterized by the completion and first runs of the LHC accelerator at CERN, which is hoped to provide the first experimental hints of what lies beyond the Standard Model of particle physics. In addition, the last decade has witnessed a new dawn of cosmology, where it has truly emerged as a precision science. Largely due to the WMAP measurements of the cosmic microwave background, we now believe to have quantitative control of much of the history of our universe. These two experimental windows offer us not only an unprecedented view of the smallest and largest structures of the universe, but also a glimpse at the very first moments in its history. At the same time, they require the theorists to focus on the fundamental challenges awaiting at the boundary of high energy particle physics and cosmology. What were the contents and properties of matter in the early universe? How is one to describe its interactions? What kind of implications do the various models of physics beyond the Standard Model have on the subsequent evolution of the universe? In this thesis, we explore the connection between in particular supersymmetric theories and the evolution of the early universe. First, we provide the reader with a general introduction to modern day particle cosmology from two angles: on one hand by reviewing our current knowledge of the history of the early universe, and on the other hand by introducing the basics of supersymmetry and its derivatives. Subsequently, with the help of the developed tools, we direct the attention to the specific questions addressed in the three original articles that form the main scientific contents of the thesis. Each of these papers concerns a distinct cosmological problem, ranging from the generation of the matter-antimatter asymmetry to inflation, and finally to the origin or very early stage of the universe. They nevertheless share a common factor in their use of the machinery of supersymmetric theories to address open questions in the corresponding cosmological models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis begins with a review of basic elements of general theory of relativity (GTR) which forms the basis for the theoretical interpretation of the observations in cosmology. The first chapter also discusses the standard model in cosmology, namely the Friedmann model, its predictions and problems. We have also made a brief discussion on fractals and inflation of the early universe in the first chapter. In the second chapter we discuss the formulation of a new approach to cosmology namely a stochastic approach. In this model, the dynam ics of the early universe is described by a set of non-deterministic, Langevin type equations and we derive the solutions using the Fokker—Planck formalism. Here we demonstrate how the problems with the standard model, can be eliminated by introducing the idea of stochastic fluctuations in the early universe. Many recent observations indicate that the present universe may be approximated by a many component fluid and we assume that only the total energy density is conserved. This, in turn, leads to energy transfer between different components of the cosmic fluid and fluctuations in such energy transfer can certainly induce fluctuations in the mean to factor in the equation of state p = wp, resulting in a fluctuating expansion rate for the universe. The third chapter discusses the stochastic evolution of the cosmological parameters in the early universe, using the new approach. The penultimate chapter is about the refinements to be made in the present model, by means of a new deterministic model The concluding chapter presents a discussion on other problems with the conventional cosmology, like fractal correlation of galactic distribution. The author attempts an explanation for this problem using the stochastic approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We calculate the relic abundance of mixed axion/neutralino cold dark matter which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/saxion/axino supermultiplet. By numerically solving the coupled Boltzmann equations, we include the combined effects of 1. thermal axino production with cascade decays to a neutralino LSP, 2. thermal saxion production and production via coherent oscillations along with cascade decays and entropy injection, 3. thermal neutralino production and re-annihilation after both axino and saxion decays, 4. gravitino production and decay and 5. axion production both thermally and via oscillations. For SUSY models with too high a standard neutralino thermal abundance, we find the combined effect of SUSY PQ particles is not enough to lower the neutralino abundance down to its measured value, while at the same time respecting bounds on late-decaying neutral particles from BBN. However, models with a standard neutralino underabundance can now be allowed with either neutralino or axion domination of dark matter, and furthermore, these models can allow the PQ breaking scale f(a) to be pushed up into the 10(14) - 10(15) GeV range, which is where it is typically expected to be in string theory models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible fixation or the so-called ‘biological fixation’ has been shown to encourage the formation of fracture callus, leading to better healing outcomes. However, the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and the optimal healing outcomes has not been fully understood. In this study, we have developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing. The model predicts that increasing flexibility of the LCP by changing the bone–plate distance (BPD) or the plate working length (WL) could enhance interfragmentary strain in the presence of a relatively large gap size (.3 mm). Furthermore, conventional LCP normally results in asymmetric tissue development during early stage of callus formation, and the increase of BPD or WL is insufficient to alleviate this problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New stars form in dense interstellar clouds of gas and dust called molecular clouds. The actual sites where the process of star formation takes place are the dense clumps and cores deeply embedded in molecular clouds. The details of the star formation process are complex and not completely understood. Thus, determining the physical and chemical properties of molecular cloud cores is necessary for a better understanding of how stars are formed. Some of the main features of the origin of low-mass stars, like the Sun, are already relatively well-known, though many details of the process are still under debate. The mechanism through which high-mass stars form, on the other hand, is poorly understood. Although it is likely that the formation of high-mass stars shares many properties similar to those of low-mass stars, the very first steps of the evolutionary sequence are unclear. Observational studies of star formation are carried out particularly at infrared, submillimetre, millimetre, and radio wavelengths. Much of our knowledge about the early stages of star formation in our Milky Way galaxy is obtained through molecular spectral line and dust continuum observations. The continuum emission of cold dust is one of the best tracers of the column density of molecular hydrogen, the main constituent of molecular clouds. Consequently, dust continuum observations provide a powerful tool to map large portions across molecular clouds, and to identify the dense star-forming sites within them. Molecular line observations, on the other hand, provide information on the gas kinematics and temperature. Together, these two observational tools provide an efficient way to study the dense interstellar gas and the associated dust that form new stars. The properties of highly obscured young stars can be further examined through radio continuum observations at centimetre wavelengths. For example, radio continuum emission carries useful information on conditions in the protostar+disk interaction region where protostellar jets are launched. In this PhD thesis, we study the physical and chemical properties of dense clumps and cores in both low- and high-mass star-forming regions. The sources are mainly studied in a statistical sense, but also in more detail. In this way, we are able to examine the general characteristics of the early stages of star formation, cloud properties on large scales (such as fragmentation), and some of the initial conditions of the collapse process that leads to the formation of a star. The studies presented in this thesis are mainly based on molecular line and dust continuum observations. These are combined with archival observations at infrared wavelengths in order to study the protostellar content of the cloud cores. In addition, centimetre radio continuum emission from young stellar objects (YSOs; i.e., protostars and pre-main sequence stars) is studied in this thesis to determine their evolutionary stages. The main results of this thesis are as follows: i) filamentary and sheet-like molecular cloud structures, such as infrared dark clouds (IRDCs), are likely to be caused by supersonic turbulence but their fragmentation at the scale of cores could be due to gravo-thermal instability; ii) the core evolution in the Orion B9 star-forming region appears to be dynamic and the role played by slow ambipolar diffusion in the formation and collapse of the cores may not be significant; iii) the study of the R CrA star-forming region suggests that the centimetre radio emission properties of a YSO are likely to change with its evolutionary stage; iv) the IRDC G304.74+01.32 contains candidate high-mass starless cores which may represent the very first steps of high-mass star and star cluster formation; v) SiO outflow signatures are seen in several high-mass star-forming regions which suggest that high-mass stars form in a similar way as their low-mass counterparts, i.e., via disk accretion. The results presented in this thesis provide constraints on the initial conditions and early stages of both low- and high-mass star formation. In particular, this thesis presents several observational results on the early stages of clustered star formation, which is the dominant mode of star formation in our Galaxy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resolution of cosmological singularities is an important problem in any full theory of quantum gravity. The Milne orbifold is a cosmology with a big-bang/big-crunch singularity, but being a quotient of flat space it holds potential for resolution in string theory. It is known, however, that some perturbative string amplitudes diverge in the Milne geometry. Here we show that flat space higher spin theories can effect a simple resolution of the Milne singularity when one embeds the latter in 2 + 1 dimensions. We explain how to reconcile this with the expectation that non-perturbative string effects are required for resolving Milne. Along the way, we introduce a Grassmann realization of the inonfi-Wigner contraction to export much of the AdS technology to -our flat space computation. (C) 2014 The Authors. Published by Elsevier BAT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of three separate studies of roles that black holes might play in our universe.

In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.

In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.

In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We know from the CMB and observations of large-scale structure that the universe is extremely flat, homogenous, and isotropic. The current favored mechanism for generating these characteristics is inflation, a theorized period of exponential expansion of the universe that occurred shortly after the Big Bang. Most theories of inflation generically predict a background of stochastic gravitational waves. These gravitational waves should leave their unique imprint on the polarization of the CMB via Thompson scattering. Scalar perturbations of the metric will cause a pattern of polarization with no curl (E-mode). Tensor perturbations (gravitational waves) will cause a unique pattern of polarization on the CMB that includes a curl component (B-mode). A measurement of the ratio of the tensor to scalar perturbations (r) tells us the energy scale of inflation. Recent measurements by the BICEP2 team detect the B-mode spectrum with a tensor-to-scalar ratio of r = 0.2 (+0.05, −0.07). An independent confirmation of this result is the next step towards understanding the inflationary universe.

This thesis describes my work on a balloon-borne polarimeter called SPIDER, which is designed to illuminate the physics of the early universe through measurements of the cosmic microwave background polarization. SPIDER consists of six single-frequency, on-axis refracting telescopes contained in a shared-vacuum liquid-helium cryostat. Its large format arrays of millimeter-wave detectors and tight control of systematics will give it unprecedented sensitivity. This thesis describes how the SPIDER detectors are characterized and calibrated for flight, as well as how the systematics requirements for the SPIDER system are simulated and measured.