993 resultados para Physical quantities
Resumo:
The present article discusses units of measure and their base units, work environments built in the Units package of the computer algebra system Maple. An analysis is drawn of the tools of the application in connection with the use of physical quantities and their features. Maple’s main commands are arranged in groups depending on the function. Some applied mathematical problems are given as examples making use of derivative, integral and differential equations.
Resumo:
The assembly history of massive galaxies is one of the most important aspects of galaxy formation and evolution. Although we have a broad idea of what physical processes govern the early phases of galaxy evolution, there are still many open questions. In this thesis I demonstrate the crucial role that spectroscopy can play in a physical understanding of galaxy evolution. I present deep near-infrared spectroscopy for a sample of high-redshift galaxies, from which I derive important physical properties and their evolution with cosmic time. I take advantage of the recent arrival of efficient near-infrared detectors to target the rest-frame optical spectra of z > 1 galaxies, from which many physical quantities can be derived. After illustrating the applications of near-infrared deep spectroscopy with a study of star-forming galaxies, I focus on the evolution of massive quiescent systems.
Most of this thesis is based on two samples collected at the W. M. Keck Observatory that represent a significant step forward in the spectroscopic study of z > 1 quiescent galaxies. All previous spectroscopic samples at this redshift were either limited to a few objects, or much shallower in terms of depth. Our first sample is composed of 56 quiescent galaxies at 1 < z < 1.6 collected using the upgraded red arm of the Low Resolution Imaging Spectrometer (LRIS). The second consists of 24 deep spectra of 1.5 < z < 2.5 quiescent objects observed with the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE). Together, these spectra span the critical epoch 1 < z < 2.5, where most of the red sequence is formed, and where the sizes of quiescent systems are observed to increase significantly.
We measure stellar velocity dispersions and dynamical masses for the largest number of z > 1 quiescent galaxies to date. By assuming that the velocity dispersion of a massive galaxy does not change throughout its lifetime, as suggested by theoretical studies, we match galaxies in the local universe with their high-redshift progenitors. This allows us to derive the physical growth in mass and size experienced by individual systems, which represents a substantial advance over photometric inferences based on the overall galaxy population. We find a significant physical growth among quiescent galaxies over 0 < z < 2.5 and, by comparing the slope of growth in the mass-size plane dlogRe/dlogM∗ with the results of numerical simulations, we can constrain the physical process responsible for the evolution. Our results show that the slope of growth becomes steeper at higher redshifts, yet is broadly consistent with minor mergers being the main process by which individual objects evolve in mass and size.
By fitting stellar population models to the observed spectroscopy and photometry we derive reliable ages and other stellar population properties. We show that the addition of the spectroscopic data helps break the degeneracy between age and dust extinction, and yields significantly more robust results compared to fitting models to the photometry alone. We detect a clear relation between size and age, where larger galaxies are younger. Therefore, over time the average size of the quiescent population will increase because of the contribution of large galaxies recently arrived to the red sequence. This effect, called progenitor bias, is different from the physical size growth discussed above, but represents another contribution to the observed difference between the typical sizes of low- and high-redshift quiescent galaxies. By reconstructing the evolution of the red sequence starting at z ∼ 1.25 and using our stellar population histories to infer the past behavior to z ∼ 2, we demonstrate that progenitor bias accounts for only half of the observed growth of the population. The remaining size evolution must be due to physical growth of individual systems, in agreement with our dynamical study.
Finally, we use the stellar population properties to explore the earliest periods which led to the formation of massive quiescent galaxies. We find tentative evidence for two channels of star formation quenching, which suggests the existence of two independent physical mechanisms. We also detect a mass downsizing, where more massive galaxies form at higher redshift, and then evolve passively. By analyzing in depth the star formation history of the brightest object at z > 2 in our sample, we are able to put constraints on the quenching timescale and on the properties of its progenitor.
A consistent picture emerges from our analyses: massive galaxies form at very early epochs, are quenched on short timescales, and then evolve passively. The evolution is passive in the sense that no new stars are formed, but significant mass and size growth is achieved by accreting smaller, gas-poor systems. At the same time the population of quiescent galaxies grows in number due to the quenching of larger star-forming galaxies. This picture is in agreement with other observational studies, such as measurements of the merger rate and analyses of galaxy evolution at fixed number density.
Resumo:
We investigate the chirality dependence of physical properties of nanotubes which are wrapped by the planar hexagonal lattice including graphite and boron nitride sheet, and reveal its symmetry origin. The observables under consideration are of scalar, vector, and tensor types. These exact chirality dependences obtained are useful to verify the experimental and numerical results and propose accurate empirical formulas. Some important features of physical quantities can also be extracted by considering the symmetry restrictions without complicated calculations.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.
Resumo:
The Taylor hypothesis has provided a model for the relaxed magnetic configurations of not only laboratory plasmas, but also of astrophysical plasmas. However, energy dissipation is possible only for systems which depart from a strict Taylor state, and hence a parameter describing that departure must be introduced, when the Taylor hypothesis is used to estimate the dissipation. An application of the Taylor hypothesis to the problem of coronal heating provides an insight into this difficult problem. When particular sorts of footpoint motions put energy and helicity in the corona, the conservation of helicity puts a constraint on how much of the energy can be dissipated. However, on considering a random distribution of footpoint motions, this constraint gets washed away, and the Taylor hypothesis is probably not going to play any significant role in the actual calculation of relevant physical quantities in the coronal heating problem.
Resumo:
Physics teachers are in a key position to form the attitudes and conceptions of future generations toward science and technology, as well as to educate future generations of scientists. Therefore, good teacher education is one of the key areas of physics departments education program. This dissertation is a contribution to the research-based development of high quality physics teacher education, designed to meet three central challenges of good teaching. The first challenge relates to the organization of physics content knowledge. The second challenge, connected to the first one, is to understand the role of experiments and models in (re)constructing the content knowledge of physics for purposes of teaching. The third challenge is to provide for pre-service physics teachers opportunities and resources for reflecting on or assessing their knowledge and experience about physics and physics education. This dissertation demonstrates how these challenges can be met when the content knowledge of physics, the relevant epistemological aspects of physics and the pedagogical knowledge of teaching and learning physics are combined. The theoretical part of this dissertation is concerned with designing two didactical reconstructions for purposes of physics teacher education: the didactical reconstruction of processes (DRoP) and the didactical reconstruction of structures (DRoS). This part starts with taking into account the required professional competencies of physics teachers, the pedagogical aspects of teaching and learning, and the benefits of the graphical ways of representing knowledge. Then it continues with the conceptual and philosophical analysis of physics, especially with the analysis of experiments and models role in constructing knowledge. This analysis is condensed in the form of the epistemological reconstruction of knowledge justification. Finally, these two parts are combined in the designing and production of the DRoP and DRoS. The DRoP captures the knowledge formation of physical concepts and laws in concise and simplified form while still retaining authenticity from the processes of how concepts have been formed. The DRoS is used for representing the structural knowledge of physics, the connections between physical concepts, quantities and laws, to varying extents. Both DRoP and DRoS are represented in graphical form by means of flow charts consisting of nodes and directed links connecting the nodes. The empirical part discusses two case studies that show how the three challenges are met through the use of DRoP and DRoS and how the outcomes of teaching solutions based on them are evaluated. The research approach is qualitative; it aims at the in-depth evaluation and understanding about the usefulness of the didactical reconstructions. The data, which were collected from the advanced course for prospective physics teachers during 20012006, consisted of DRoP and DRoS flow charts made by students and student interviews. The first case study discusses how student teachers used DRoP flow charts to understand the process of forming knowledge about the law of electromagnetic induction. The second case study discusses how student teachers learned to understand the development of physical quantities as related to the temperature concept by using DRoS flow charts. In both studies, the attention is focused on the use of DRoP and DRoS to organize knowledge and on the role of experiments and models in this organization process. The results show that students understanding about physics knowledge production improved and their knowledge became more organized and coherent. It is shown that the flow charts and the didactical reconstructions behind them had an important role in gaining these positive learning results. On the basis of the results reported here, the designed learning tools have been adopted as a standard part of the teaching solutions used in the physics teacher education courses in the Department of Physics, University of Helsinki.
Resumo:
We comment on the paradox that seems to exist about a correlation between the size-dependent melting temperature and the forbidden energy gap of nanoparticles. By analyzing the reported expressions for the melting temperature and the band gap of nanoparticles, we conclude that there exists a relation between these two physical quantities. However, the variations of these two quantities with size for semiconductors are different from that of metals. (C) 2010 American Institute of Physics.[doi:10.1063/1.3466920].
Resumo:
In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.
Resumo:
We investigate the effect of static electron-phonon coupling on real-time dynamics of spin and charge transport in pi-conjugated polyene chains. The polyene chain is modeled by the Pariser-Parr-Pople Hamiltonian with dimerized nearest-neighbor parameter t(0)(1 + delta) for short bonds and t(0)(1 - delta) for long bonds, and long-range electron-electron interactions. We follow the time evolution of the spin and charge using time-dependent density matrix renormalization group technique when a hole is injected at one end of the chain in its ground state. We find that spin and charge dynamics followed through spin and charge velocities depend both on chain length and extent of dimerization delta. Analysis of the results requires focusing on physical quantities such as average spin and charge polarizations, particularly in the large dimerization limit. In the dimerization range 0.0 <= delta <= 0.15, spin-charge dynamics is found to have a well-defined behavior, with spin-charge separation (measured as the ratio of charge velocity to spin velocity) as well as the total amount of charge and spin transported in a given time along the chain decreasing as dimerization increases. However, in the range 0.3 <= delta <= 0.5, it is observed that the dynamics of spin and charge transport becomes complicated. It is observed that, for large delta values, spin-charge separation is suppressed and the injected hole fails to travel the entire length of the chain.
Resumo:
In this paper we calculate the potential for a prolate spheroidal distribution as in a dark matter halo with a radially varying eccentricity. This is obtained by summing up the shell-by-shell contributions of isodensity surfaces, which are taken to be concentric and with a common polar axis and with an axis ratio that varies with radius. Interestingly, the constancy of potential inside a shell is shown to be a good approximation even when the isodensity contours are dissimilar spheroids, as long as the radial variation in eccentricity is small as seen in realistic systems. We consider three cases where the isodensity contours are more prolate at large radii, or are less prolate or have a constant eccentricity. Other relevant physical quantities like the rotation velocity, the net orbital and vertical frequency due to the halo and an exponential disc of finite thickness embedded in it are obtained. We apply this to the kinematical origin of Galactic warp, and show that a prolate-shaped halo is not conducive to making long-lived warps - contrary to what has been proposed in the literature. The results for a prolate mass distribution with a variable axis ratio obtained are general, and can be applied to other astrophysical systems, such as prolate bars, for a more realistic treatment.
Resumo:
Many boundary value problems occur in a natural way while studying fluid flow problems in a channel. The solutions of two such boundary value problems are obtained and analysed in the context of flow problems involving three layers of fluids of different constant densities in a channel, associated with an impermeable bottom that has a small undulation. The top surface of the channel is either bounded by a rigid lid or free to the atmosphere. The fluid in each layer is assumed to be inviscid and incompressible, and the flow is irrotational and two-dimensional. Only waves that are stationary with respect to the bottom profile are considered in this paper. The effect of surface tension is neglected. In the process of obtaining solutions for both the problems, regular perturbation analysis along with a Fourier transform technique is employed to derive the first-order corrections of some important physical quantities. Two types of bottom topography, such as concave and convex, are considered to derive the profiles of the interfaces. We observe that the profiles are oscillatory in nature, representing waves of variable amplitude with distinct wave numbers propagating downstream and with no wave upstream. The observations are presented in tabular and graphical forms.
Resumo:
Here we extend the exploration of significantly super-Chandrasekhar magnetized white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetized polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetized axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3 + 1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of 10(14) G and differential rotation with surface time periods of about 1-10 s. We note that such white dwarfs are candidates for the progenitors of peculiar, overluminous Type Ia supernovae, to which observational evidence ascribes mass in the range 2.1-2.8 solar mass. We also present some interesting results related to the structure of such white dwarfs, especially the existence of polar hollows in special cases.