989 resultados para Physical instruments.
Resumo:
Three-dimensional models which contain both geometry and texture have numerous applications such as urban planning, physical simulation, and virtual environments. A major focus of computer vision (and recently graphics) research is the automatic recovery of three-dimensional models from two-dimensional images. After many years of research this goal is yet to be achieved. Most practical modeling systems require substantial human input and unlike automatic systems are not scalable. This thesis presents a novel method for automatically recovering dense surface patches using large sets (1000's) of calibrated images taken from arbitrary positions within the scene. Physical instruments, such as Global Positioning System (GPS), inertial sensors, and inclinometers, are used to estimate the position and orientation of each image. Essentially, the problem is to find corresponding points in each of the images. Once a correspondence has been established, calculating its three-dimensional position is simply a matter of geometry. Long baseline images improve the accuracy. Short baseline images and the large number of images greatly simplifies the correspondence problem. The initial stage of the algorithm is completely local and scales linearly with the number of images. Subsequent stages are global in nature, exploit geometric constraints, and scale quadratically with the complexity of the underlying scene. We describe techniques for: 1) detecting and localizing surface patches; 2) refining camera calibration estimates and rejecting false positive surfels; and 3) grouping surface patches into surfaces and growing the surface along a two-dimensional manifold. We also discuss a method for producing high quality, textured three-dimensional models from these surfaces. Some of the most important characteristics of this approach are that it: 1) uses and refines noisy calibration estimates; 2) compensates for large variations in illumination; 3) tolerates significant soft occlusion (e.g. tree branches); and 4) associates, at a fundamental level, an estimated normal (i.e. no frontal-planar assumption) and texture with each surface patch.
Resumo:
La escoliosis es una desviación lateral de la columna vertebral desde la línea media, caracterizada por una curvatura lateral y por una rotación vertebral. Generalmente, es de carácter idiopático y se presenta, principalmente, en niñas adolescentes. Existen múltiples técnicas de tratamiento conservador para la escoliosis, entre las cuales se encuentran la terapia manual, que complementa el tratamiento para dicha patología. Esta terapia utiliza menos medios físicos, más manipulación de tejidos blandos y óseos, y logra así una recuperación más eficaz, con una mejor calidad de vida. El objetivo de este estudio de caso es comparar y describir los cambios en las condiciones de una paciente de 18 años, con escoliosis idiopática juvenil en columna toracolumbar izquierda, al aplicar un tratamiento de terapia manual. Se realizaron procedimientos de valoración integral mediante terapia manual, ortopedia, postura computarizada, análisis del puesto de trabajo, tratamiento con medios físicos y movilización de las articulaciones torácicas y lumbares, en los segmentos vertebrales que presentaban disminución del deslizamiento inferior de las carillas inferiores de la vértebra superior, sobre las carillas superiores de la vértebra inferior (segmentos T5-T6, T6-T7, T7-T8, T8-T9);técnicas de energía muscular, ejercicios de reeducación postural global, estabilización cervical y lumbar, ejercicios de fortalecimiento para musculatura débil del hemicuerpo izquierdo y de estiramiento, con el fin de elongar la musculatura retraída del hemicuerpo derecho. Al iniciar el tratamiento, se verificó, mediante una radiografía, que el ángulo de Cobb era de 24º; después de las sesiones de terapia manual se logró reducir a 18º, lo que generó una disminución significativa de 6º. Se verificó la efectividad del tratamiento por la disminución del dolor, el aumento de la fuerza muscular, la realineación postural, la satisfacción del paciente y la recuperación significativa comprobada por los estudios radiológicos.
Resumo:
In magnetic resonance imaging (MRI), either on human or animal studies, the main requirements for radiofrequency (RF) coils are to produce a homogeneous RF field while used as a transmitter coil and to have the best signal-to-noise ratio (SNR) while used as a receiver. Besides, they need to be easily frequency adjustable and have input impedance matching 50 Omega to several different load conditions. New theoretical and practical concepts are presented here for considerable enhancing of RF coil homogeneity for MRI experiments on small animals. To optimize field homogeneity, we have performed simulations using Blot and Savart law varying the coil`s window angle, achieving the optimum one. However, when the coil`s dimensions are the same order of the wave length and according to transmission line theory, differences in electrical length and effects of mutual inductances between adjacent strip conductors decrease both field homogeneity and SNR. The problematic interactions between strip conductors by means of mutual inductance were eliminated by inserting crossings at half electrical length, avoiding distortion on current density, thus eliminating sources of field inhomogeneity. Experimental results show that measured field maps and simulations are in good agreement. The new coil design, dubbed double-crossed saddle described here have field homogeneity and SNR superior than the linearly driven 8-rung birdcage coil. One of our major findings was that the effects of mutual inductance are more significant than differences in electrical length for this frequency and coil dimensions. In vitro images of a primate Cebus paela brain were acquired, confirming double-crossed saddle superiority. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 37B: 193-201, 2010
Resumo:
"The material presented here has appeared in part in the American journal of physics."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
In this work a superposition technique for designing gradient coils for the purpose of magnetic resonance imaging is outlined, which uses an optimized weight function superimposed upon an initial winding similar to that obtained from the target field method to generate the final wire winding. This work builds on the preliminary work performed in Part I on designing planar insertable gradient coils for high resolution imaging. The proposed superposition method for designing gradient coils results in coil patterns with relatively low inductances and the gradient coils can be used as inserts into existing magnetic resonance imaging hardware. The new scheme has the capacity to obtain images faster with more detail due to the deliver of greater magnetic held gradients. The proposed method for designing gradient coils is compared with a variant of the state-of-the-art target field method for planar gradient coils designs, and it is shown that the weighted superposition approach outperforms the well-known the classical method.
Resumo:
A new method for ameliorating high-field image distortion caused by radio frequency/tissue interaction is presented and modeled, The proposed method uses, but is not restricted to, a shielded four-element transceive phased array coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both images together, the image distortion can be reduced several-fold. A hybrid finite-difference time-domain/method-of-moments method is used to theoretically demonstrate the method and also to predict the radio frequency behavior inside the human head. in addition, the proposed method is used in conjunction with the GRAPPA reconstruction technique to enable rapid imaging. Simulation results reported herein for IIT (470 MHz) brain imaging applications demonstrate the feasibility of the concept where multiple acquisitions using parallel imaging elements with GRAPPA reconstruction results in improved image quality. (c) 2006 Wiley Periodicals, Inc.
Resumo:
BACKGROUND: Physical activity self-report instruments in the US have largely been developed for and validated in White samples. Despite calls to validate existing instruments in more diverse samples, relatively few instruments have been validated in US Blacks. Emerging evidence suggests that these instruments may have differential validity in Black populations. PURPOSE: This report reviews and evaluates the validity and reliability of self-reported measures of physical activity in Blacks and makes recommendations for future directions. METHODS: A systematic literature review was conducted to identify published reports with construct or criterion validity evaluated in samples that included Blacks. Studies that reported results separately for Blacks were examined. RESULTS: The review identified 10 instruments validated in nine manuscripts. Criterion validity correlations tended to be low to moderate. No study has compared the validity of multiple instruments in a single sample of Blacks. CONCLUSION: There is a need for efforts validating self-report physical activity instruments in Blacks, particularly those evaluating the relative validity of instruments in a single sample.
Resumo:
To develop real-time simulations of wind instruments, digital waveguides filters can be used as an efficient representation of the air column. Many aerophones are shaped as horns which can be approximated using conical sections. Therefore the derivation of conical waveguide filters is of special interest. When these filters are used in combination with a generalized reed excitation, several classes of wind instruments can be simulated. In this paper we present the methods for transforming a continuous description of conical tube segments to a discrete filter representation. The coupling of the reed model with the conical waveguide and a simplified model of the termination at the open end are described in the same way. It turns out that the complete lossless conical waveguide requires only one type of filter.Furthermore, we developed a digital reed excitation model, which is purely based on numerical integration methods, i.e., without the use of a look-up table.