5 resultados para Phrixotrix


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The luciferases of the railroad worm Phrixotrix (Coleoptera: Phengodidae) are the only beetle luciferases that naturally produce true red bioluminescence. Previously, we cloned the green- (PxGR) and red-emitting (PxRE) luciferases of railroad worms Phrixotrix viviani and P. hirtus[OLE1]. These luciferases were expressed and purified, and their active-site properties were determined. The red-emitting PxRE luciferase displays flash-like kinetics, whereas PxGR luciferase displays slow-type kinetics. The substrate affinities and catalytic efficiency of PxRE luciferase are also higher than those of PxGR luciferase. Fluorescence studies with 8-anilino-1-naphthalene sulfonic acid and 6-p-toluidino-2-naphthalene sulfonic acid showed that the PxRE luciferase luciferin-binding site is more polar than that of PxGR luciferase, and it is sensitive to guanidine. Alutagenesis and modelling studies suggest that several invariant residues in the putative luciferin-binding site of PxRE luciferase cannot interact with excited oxyluciferin. These results suggest that one portion of the luciferin-binding site of the red-emitting luciferase is tighter than that of PxGR luciferase, whereas the other portion could be more open and polar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To find the regions having a major influence on the bioluminescence spectra of railroad worm luciferases, we constructed new chimeric luciferases switching the fragments from residues 1-219 and from 220-545 between Phrixotrix viviani (PxvGR; λmax = 548 nm) green light-emitting luciferase and Phrixothrix hirtus (PxhRE; λmax = 623 nm) red light-emitting luciferases. The emission spectrum (λmax = 571 nm) and KM for luciferin in the chimera PxRE220GR (1-219, PxhRE; 220-545, PxvGR) suggested that the region above residue 220 of PxvGR had a major effect on the active site. However, switching the sequence between the residues 226-344 from PxvGR luciferase into PxhRE (PxREGRRE) luciferase resulted in red light emission (λmax = 603 nm), indicating that the region 220-344 by itself does not determine the emission spectrum. Furthermore, the sequence before residue 220 of the green-emitting luciferase is incompatible for light emission with the sequence above residue 220 of PxhRE. These results suggest that the fragments before and after residue 220, which correspond to distinct subdomains, may fold differently in the green- and red-emitting luciferases, affecting the active site conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phrixotrix (railroad worm) luciferases produce bioluminescence in the green and red regions of the spectrum, depending on the location of the lanterns, and are the only luciferases naturally producing red bioluminescence. Comparison of the luciferase sequences showed a set of substitutions that could be involved in bioluminescence colour determination: (a) unique substitutions in the red luciferase replacing otherwise invariant residues; (b) conserved basic residues in the green-yellow emitting luciferases; and (c) an additional R353 residue in red-emitting luciferase (Viviani et al., 1999). To investigate whether these sites have a functional role in bioluminescence colour determination, we performed a site-directed mutagenesis. Natural substitutions in the region 220-344 and residues in the putative luciferin-binding site were also investigated. With the exception of the previously identified substitution of R215 and T226 (Viviani et al., 2002), which display dramatic red-shift effects on the spectrum of green-yellow-emitting luciferases, only a few substitutions had a moderate effect on the spectrum of the green-emitting luciferase. In contrast, no single substitution affected the spectrum of the red-emitting luciferase. The results suggest that the identity of the active site residues is not so critical for determining red bioluminescence in PxRE luciferase. Rather, the conformation assumed during the emitting step could be critical to set up proper interactions with excited oxyluciferin. Copyright ©2007 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors. © 2007 The Authors.