997 resultados para Photosynthetic Activity
Resumo:
A vipp1 mutant of Synechocystis sp. PCC 6803 could not be completely segregated under either mixotrophic or heterotrophic conditions. A vipp1 gene with a copper-regulated promoter (P-petE-vipp1) was integrated into a neutral platform in the genome of the merodiploid mutant. The copper-induced expression of P-petE-vipp1 allowed a complete segregation of the vipp1 mutant and observation of the phenotype of Synechocystis 6803 with different levels of vesicle-inducing protein in plastids 1 (Vipp1). When P-petE-vipp1 was turned off by copper deprivation, Synechocystis lost Vipp1 and photosynthetic activity almost simultaneously, and at a later stage, thylakoid membranes and cell viability. The photosystem II (PSII)-mediated electron transfer was much more rapidly reduced than the PSI-mediated electron transfer. By testing a series of concentrations, we found that P-petE-vipp1 cells grown in medium with 0.025 mu M Cu2+ showed no reduction of thylakoid membranes, but greatly reduced photosynthetic activity and viability. These results suggested that in contrast to a previous report, the loss of photosynthetic activity may not have been due to the loss of thylakoid membranes, but may have been caused more directly by the loss of Vipp1 in Synechocystis 6803.
Resumo:
Photosynthetic activity during rehydration at four temperatures (5, 15, 25, 35 degrees C) was studied in a terrestrial, highly drought-tolerant cyanobacterium, Nostoc flagelliforme. At all the temperatures, the optimum quantum yield F-v/F-m increased rapidly within I It and then increased slowly during the process of rehydration. The increase in F-v/F-m at 25 and 35 degrees C was larger than that at 5 and 15 degrees C. In addition, the changes of initial intensity of fluorescence (F-0) and variable fluorescence (F-v) were more significant at 25 and 35 degrees C than those at 5 and 15 degrees C. Chlorophyll a content increased with the increase of temperature during the course of rehydration, with this being more pronounced at 25 and 35 degrees C. The photosynthetic rates at 25 and 35 degrees C were higher than those at 5 and 15 degrees C. Induction of chlorophyll fluorescence with sustained rewetting at 5 and 15 degrees C had two phases of transformation, whereas at 25 and 35 degrees C it had a third peak kinetic phase and showed typical chlorophyll fluorescence steps on rewetting for 24 h, representing a normal physiological state. A comparison of the chlorophyll fluorescence parameters, chlorophyll a content, and the chlorophyll fluorescence induction led to the conclusion that N. flagelliforme had a more rapid and complete recovery at 25 and 35 degrees C than that at 5 and 15 degrees C, although it could recover its photosynthetic activity at any of the four temperatures. (c) 2007 Published by Elsevier Ltd.
Resumo:
The physiological performance of four cacao clones was examined under three artificial shade regimes over the course of a year in Ghana. Plants under light shade had significantly higher photosynthetic rates in the rainy seasons whereas in the dry season there was a trend of higher photosynthetic rates under heavy shade. The results imply that during the wet seasons light was the main limiting factor to photosynthesis whereas in the dry season vapour pressure deficit was the major factor limiting photosynthesis through stomatal regulation. Leaf area was generally lower under heavier shade but the difference between shade treatments varied between clones. Such differences in leaf area allocation appeared to underlie genotypic differences in final biomass production in response to shade. The results suggest that shade for young cacao should be provided based on the current ambient environment and genotype.
Resumo:
Coffea arabica is considered to be sensitive to low temperatures, being affected throughout its entire life cycle. Injury caused by chilling (low temperatures above zero degree centigrade) is characterized primarily by inhibition of the photosynthetic process. The objective of this work was to evaluate the role of photosynthetic pigments in the tolerance of coffee (C. arabica L.) seedlings to chilling. The evaluation the photosynthetic activity was made by emission of Chl a fluorescence at room temperature (25°C) in vivo and in situ, using a portable fluorometer. The pigment content was obtained by extraction with 80% acetone, while estimation of membrane lipid peroxidation was determined by measuring the MDA content in leaf tissue extracts. The results indicated a generalized reduction in the quantum yield of PSII when the seedlings were maintained in the dark. The reduction occurred in the seedlings submitted to chilling treatment as well as in the control ones. This demonstrates that not only chilling acts to cause an alteration in PSII. It is possible that the tissue storage reserves had been totally exhausted, with the respiratory rate exceeding the photosynthetic rate; the later was nil, since the seedlings were kept in the dark. The efficiency in the capture, transfer and utilization of light energy in PS11 photochemical reactions requires a sequence of photochemical, biochemical and biophysical events which depend on the structural integrity of the photosynthetic apparatus. However, this efficiency was found to be related to the protective action of chloroplastid pigments, rather than to the concentration of these pigments.
Resumo:
Macrophytes growing in shallow coastal zones characterised by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH changes in shallow (5-12 m) seagrass (Posidonia oceanica) meadows spanning 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (omega Ar)) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean, max and range pHNBS and max and range omega Ar. In June, vertical mixing (as Turbulent Kinetic Energy) influenced max and min omega Ar, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. Max and range omega Ar within the meadow showed a positive trend with the calcium carbonate load of the leaves, pointing to a possible link between structural parameters, omega Ar and carbonate deposition.
Resumo:
Plant growth at extremely high elevations is constrained by high daily thermal amplitude, strong solar radiation and water scarcity. These conditions are particularly harsh in the tropics, where the highest elevation treelines occur. In this environment, the maintenance of a positive carbon balance involves protecting the photosynthetic apparatus and taking advantage of any climatically favourable periods. To characterize photoprotective mechanisms at such high elevations, and particularly to address the question of whether these mechanisms are the same as those previously described in woody plants along extratropical treelines, we have studied photosynthetic responses in Polylepis tarapacana Philippi in the central Andes (18 degrees S) along an elevational gradient from 4300 to 4900 m. For comparative purposes, this gradient has been complemented with a lower elevation site (3700 m) where another Polylepis species (P. rugulosa Bitter) occurs. During the daily cycle, two periods of photosynthetic activity were observed: one during the morning when, despite low temperatures, assimilation was high; and the second starting at noon when the stomata closed because of a rise in the vapour pressure deficit and thermal dissipation is prevalent over photosynthesis. From dawn to noon there was a decrease in the content of antenna pigments (chlorophyll b and neoxanthin), together with an increase in the content of xanthophyll cycle carotenoids. These results could be caused by a reduction in the antenna size along with an increase in photoprotection. Additionally, photoprotection was enhanced by a partial overnight retention of de-epoxized xanthophylls. The unique combination of all of these mechanisms made possible the efficient use of the favourable conditions during the morning while still providing enough protection for the rest of the day. This strategy differs completely from that of extratropical mountain trees, which uncouple light-harvesting and energy-use during long periods of unfavourable, winter conditions.
Resumo:
Dew is an important water source for desert organisms in semiarid and arid regions. Both field and laboratory experiments were conducted to investigate the possible roles of dew in growth of biomass and photosynthetic activity within cyanobacterial crust. The cyanobacteria, Microcoleus vaginatus Gom. and Scytonema javanicum (Kutz.) Born et Flah., were begun with stock cultures and sequential mass cultivations, and then the field experiment was performed by inoculating the inocula onto shifting sand for forming cyanobacterial crust during late summer and autumn of 2007 in Hopq Desert, northwest China. Measurements of dew amount and Chlorophyll a content were carried out in order to evaluate the changes in crust biomass following dew. Also, we determined the activity of photosystem II(PSII) within the crust in the laboratory by simulating the desiccation/rehydration process due to dew. Results showed that the average daily dew amount as measured by the cloth-plate method (CPM) was 0.154 mm during fifty-three days and that the crust biomass fluctuated from initial inoculation of 4.3 mu g Chlorophyll a cm(-2) sand to 5.8-7.3 mu g Chlorophyll a cm(-2) crust when dew acted as the sole water source, and reached a peak value of approximately 8.2 mu g Chlorophyll a cm(-2) crust owing to rainfalls. It indicated that there was a highly significant correlation between dew amounts and crust moistures (r = 0.897 or r = 0.882, all P < 0.0001), but not a significant correlation between dew and the biomass (r = 0.246 or r = 0.257, all P > 0.05), and thus concluded that dew might only play a relatively limited role in regulating the crust biomass. Correspondingly, we found that rains significantly facilitated biomass increase of the cyanobacterial crust. Results from the simulative experiment upon rehydration showed that approximately 80% of PSII activity could be achieved within about 50 min after rehydration in the dark and at 5 degrees C, and only about 20% of the activity was light-temperature dependent. This might mean that dew was crucial for cyanobacterial crust to rapidly activate photosynthetic activity during desiccation and rehydration despite low temperatures and weak light before dawn. It also showed in this study that the cyanobacterial crusts could receive and retain more dew than sand, which depended on microclimatic characteristics and soil properties of the crusts. It may be necessary for us to fully understanding the influence of dew on regulating the growth and activity of cyanobacterial crust, and to soundly evaluate the crust's potential application in fighting desertification because of the available water due to dew. (C) 2009 Published by Elsevier Ltd.
Resumo:
Diurnal photosynthesis of Nostoc flagelliforme was investigated at varied levels of CO2 concentrations and desiccation in order to estimate the effects of enriched CO2 and watering on its daily production. Photosynthetic activity was closely correlated with the desiccated status of the algal mats, increased immediately after watering, reached a maximum at moderate water loss, and then declined with further desiccation. Increased CO2 concentration enhanced the diurnal photosynthesis and raised the daily production. Watering twice per day enhanced the daily production due to prolonged period of active photosynthesis. The values of daily net production were 1321280 mumol CO2 g (d. wt)(-1) d(-1), corresponding to about 0.6-6.1% daily increase in dry weight. High-CO2-grown mats required higher levels of photon flux density to saturate the alga's photosynthesis in air. Air-grown mats showed higher photosynthetic affinity for CO2 and higher levels of dark respiration compared with high-CO2-grown samples.
Resumo:
The effects of nutrients on the photosynthetic recovery of Nostoc flagelliforme during re-hydration were investigated in order to see if their addition was necessary. Net photosynthesis was negligible in distilled water without nutrient-enrichment. Addition of K+ resulted in significant enhancement of net photosynthesis, whereas other nutrients (Fe3+, Mg2+, Na+, NO3-, PO43-, Cl-) and trace-metals (A(5)) showed little effect. The recovered net photosynthetic activity increased with the increased K+, and reached the maximum at concentrations above 230 mu M. Desiccation and re-hydration did not affect the dependence of photosynthetic recovery on K+. It was concluded that dried field populations of N. flagelliforme require exogenous addition of potassium for photosynthetic recovery and that growth may be potassium-limited in nature.
Resumo:
In this work, the photosynthetic performances of Enteromorpha prolifera thalli collected from the surface and bottom of the sea of Qingdao sea area were studied with chlorophyll fluorescence and oxygraph technology. The samples with the highest photosynthetic activity among their kinds, the floating thalli from the sea surface of the south of the Qingdao Olympic Sailing Center and the sedimentary thalli from the mud surface of the bottom Tuandao bay, were chosen as representatives of surface thalli and bottom thalli, respectively. The results showed that the maximal PSII quantum yield of the floating thalli was significantly lower than the normal level although their photosynthetic activities were relatively high; the photosynthetic potential of the thalli form the mud surface was extremely low. Thus, it is indicated that the floating thalli are seriously stressed by their environment and the thalli from the mud surface are already dead or are dying. On the other hand, the results of the laboratory cultivation showed that the sedimentary thalli cannot regain normal photosynthetic activity even under normal illumination conditions. Thus, the thalli from the mud surface cannot become reproductive source of the alga even if they can reach sea surface again. Therefore, a preliminary conclusion can be reached that, up to mid-July 2008, the environmental conditions of the Qingdao sea area are not suitable for the growth of the alga E. prolifera and for this reason the biomass of E. prolifera, in the area, could be declining.
Resumo:
An on-line controlled 7 1 sterilizable photobioreactor was used for the optimisation of a culture of gametophytes of Undaria pinnatifida. The gametophytes, which had been stored for three years in a culture cabinet at 16 degreesC, could rapidly grow in the photobioreactor under controlled conditions. The rate of increase of dissolved oxygen and pH were used to monitor the photosynthetic activity. Optimal gametophytes density changed varying the light intensity. The optimal cell densities were 3.24 and 3.45 g FW l(-1) when the cultures were exposed to 61.7 and 82.3 muE m(-2) s(-1), respectively. The optimal cell density was higher under a high photon flux density (PFD) than under low PFD. On the other hand, the optimal light intensities were different for different cell density cultures. The light saturation point was higher at high cell density cultures than at low cell density cultures. The optimal rotational speed was 150 rpm for high cell density culture in the photobioreactor. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The photosynthetic performances of regenerated protoplasts of Bryopsis hypnoides, which were incubated in seawater for 1, 6, 12, and 24 h, were studied using chlorophyll (Chl) fluorescence and oxygen measurements. Results showed that for the regenerated protoplasts, the pigment content, the ratios of photosynthetic rate to respiration rate, the maximal photosystem II (PSII) quantum yield (F-v/F-m), and the effective PSII quantum yield (I broken vertical bar(PSII)) decreased gradually along with the regeneration progress, indicated that during 24 h of regeneration there was a remarkable reduction in PSII activity of those newly formed protoplasts. We assumed that during the cultivation progress the regenerated protoplasts had different photosynthetic vigor, with only some of them able to germinate and develop into mature thalli. The above results only reflected the photosynthetic features of the regenerated protoplasts at each time point as a whole, rather than the actual photosynthetic activity of individual aggregations. Further investigation suggested a relationship between the size of regenerated protoplasts and their viability. The results showed that the middle-sized group (diameter 20-60 mu m) retained the largest number of protoplasts for 24 h of growth. The changes in F-v/F-m and I broken vertical bar(PSII) of the four groups of differently sized protoplasts (i.e. < 20, 20-60, 60-100, and > 100 mu m) revealed that the protoplasts 20-60 mu m in diameter had the highest potential activity of the photosynthetic light energy absorption and conversion for several hours.
Resumo:
Experiments on growth characters and ecological functions of the macroalgae Gracilaria lemaneiformis, collected from south China, were conducted in polyculture areas of kelp and filter-feeding bivalve in Sanggou Bay in Weihai City, Shandong, in north China from May 2002 to May 2003. The results of 116 days cultivation showed that the average wet weight of alga increased 89 times from 0.1 to 8.9 kg rope(-1), with an average specific growth rate ( based on wet weight) of 3.95% per day. The most favorable water layer for its growth was 1.0 - 1.8 m below the surface in July and August, with an average specific growth rate of 8.2% per day in 30-day experiments. Photosynthetic activity changed seasonally, with an average of 7.3 mg O-2 g dw(-1) h(-1). The maximum rate (14.4 mg O-2 g dw(-1) h(-1)) was recorded in July, or 19.3 mg CO2 g dw(-1) h(-1), while the minimum (0.40 mg CO2 g dw(-1) h(-1)) was in April. This study indicated that the culture of G. lemaneiformis is an effective way to improve water quality where scallops are cultivated intensively.
Resumo:
Photosynthetic induction in leaves of four-month-old Eucalyptus urograndis seedlings and of cuttings obtained from adult trees that were previously dark-adapted was studied by the in vivo and in situ Open Photoacoustic Cell Technique, Results for the gas exchange component of the photoacoustic (PA) signal were interpreted considering that the gas uptake component would have a phase angle nearly opposite to that of the oxygen evolution component. By subtracting the thermal component from the total PA signal, we studied the competition between gas uptake and oxygen evolution during the photosynthetic induction. Seedlings presented a net oxygen evolution prior to cuttings, but cuttings reached a higher steady-state photosynthetic activity. The chlorophyll (Chl) a/b ratio and the Chl fluorescence induction characteristic F-v/F-m were significantly higher for cuttings, while there was no difference between samples in stomata density and leaf thickness. Thus the differences in PA signals of seedlings and cuttings are associated to differences between the photosystem 2 antenna systems of these samples.
Resumo:
Maize (Zea mays L.) is a chill-susceptible crop cultivated in northern latitude environments. The detrimental effects of cold on growth and photosynthetic activity have long been established. However, a general overview of how important these processes are with respect to the reduction of productivity reported in the field is still lacking. In this study, a model-assisted approach was used to dissect variations in productivity under suboptimal temperatures and quantify the relative contributions of light interception (PARc) and radiation use efficiency (RUE) from emergence to flowering. A combination of architectural and light transfer models was used to calculate light interception in three field experiments with two cold-tolerant lines and at two sowing dates. Model assessment confirmed that the approach was suitable to infer light interception. Biomass production was strongly affected by early sowings. RUE was identified as the main cause of biomass reduction during cold events. Furthermore, PARc explained most of the variability observed at flowering, its relative contributions being more or less important according to the climate experienced. Cold temperatures resulted in lower PARc, mainly because final leaf length and width were significantly reduced for all leaves emerging after the first cold occurrence. These results confirm that virtual plants can be useful as fine phenotyping tools. A scheme of action of cold on leaf expansion, light interception and radiation use efficiency is discussed with a view towards helping breeders define relevant selection criteria. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.