64 resultados para Photosensitization
Resumo:
Minimizing fungal infection is essential to the control of mycotoxin contamination of foods and feeds but many potential control methods are not without their own safety concerns for the consumers. Photodynamic inactivation is a novel light-based approach which offers a promising alternative to conventional methods for the control of mycotoxigenic fungi. This study describes the use of curcumin to inactivate spores of Aspergillus flavus, one of the major aflatoxin producing fungi in foods and feeds. Curcumin is a natural polyphenolic compound from the spice turmeric (Curcuma longa). In this study the plant has shown to be an effective photosensitiser when combined with visible light (420 nm). The experiment was conducted in in vitro and in vivo where A. flavus spores were treated with different photosensitiser concentration and light dose both in buffer solution and on maize kernels. Comparison of fungal load from treated and untreated samples was determined, and reductions of fungal spore counts of up to 3 log CFU ml−1 in suspension and 2 log CFU g−1 in maize kernels were obtained using optimal dye concentrations and light dose combinations. The results in this study indicate that curcumin-mediated photosensitization is a potentially effective method to decontaminate A. flavus spores in foods and feeds.
Resumo:
Surface photovoltage spectra (SPS) measurements of TiO2 show that a large surface state density is present on the TiO2 nanoparticles and these surface states can be efficiently decreased by sensitization using US nanoparticles as well as by suitable heat treatment. The photoelectrochemical behavior of the bare TiO2 thin film indicates that the mechanism of photoelectron transport is controlled by the trapping/detrapping properties of surface states within the thin films, The slow photocurrent response upon the illumination can be explained by the trap saturation effect. For a TiO2 nanoparticulate thin film sensitized using US nanoparticles, the slow photocurrent response disappears and the steady-state photocurrent increases drastically, which suggests that photosensitization can decrease the effect of surface states on photocurrent response.
Resumo:
R-phycoerythrin (R-PE) is one of important proteins involved in capturing light during photosynthesis in red algae, and it is highly fluorescent, and water-soluble chromophores. In vivo, it can transfer the light energy into photosynthetic center, however, it can deliver the captured light energy captured to the surrounding oxygen in vitro and produce reactive oxygen species such as singlet oxygen, which is toxic to tumor cells. R-PE was added to the culture medium of tumor cells, subsequently with irradiation of 488 nm, Argon laser of 25.6 J/cm(2). The result by MTT assay showed that the survival rate decreased with the increase of R-PE concentration from 1 to 100 mg/L. The result from H-3-TdR incorporation demonstrated that the synthesis of DNA reduced when the concentration of R-PE increased from 0.01 to 0.32 mg/L. Besides, pUC18 DNA showed a conversion from supercoiled into linear conformation. The conclusion comes that R-PE mediated PDT can influence the conformation of DNA, and it may be one of the mechanisms of R-PE mediated photodynamic therapy.
Resumo:
We have studied the spectroscopic properties of hair (white, blond, red, brown, and black) under illumination with visible light, giving special emphasis to the photoinduced generation of singlet oxygen ((1)O(2)). Irradiation of hair shafts (lambda(ex)>400 nm) changed their properties by degrading the melanin. Formation of C3 hydroperoxides in the melanin indol groups was proven by (1)H NMR. After 532-nm excitation, all hair shafts presented the characteristic (1)O(2) emission (lambda(em) = 1270 nm), whose intensity varied inversely with the melanin content. (1)O(2) lifetime was also shown to vary with hair type, being five times shorter in black hair than in blond hair, indicating the role of melanin as a (1)O(2) suppressor. Lifetime ranged from tenths of a nanosecond to a few microseconds, which is much shorter than the lifetime expected for (1)O(2) in the solvents in which the hair shafts were suspended, indicating that (1)O(2) is generated and suppressed inside the hair structure. Both eumelanin and pheomelanin were shown to produce and to suppress (1)O(2), with similar efficiencies. The higher amount of (1)O(2) generated in blond hair and its longer lifetime is compatible with the stronger damage that light exposure causes in blond hair. We propose a model to explain the formation and suppression of (1)O(2) in hair by photosensitization of melanin with visible light and the deleterious effects that an excess of visible light may cause in hair and skin. 2011 Published by Elsevier Inc.
Resumo:
We present a study on whether and to what extent subcellular localization may compete favorably with photosensitization efficiency with respect to the overall efficiency of photoinduced cell death. We have compared the efficiency with which two cationic photosensitizers, namely methylene blue (MB) and crystal violet (CV), induce the photoinduced death of human cervical adenocarcinoma (HeLa) cells. Whereas MB is well known to generate singlet oxygen and related triplet excited species with high quantum yields in a variety of biological and chemical environments (i.e., acting as a typical type II photosensitizer), the highly mitochondria-specific CV produces triplet species and singlet oxygen with low yields, acting mostly via the classical type I mechanism (e.g., via free radicals). The findings described here indicate that the presumably more phototoxic type II photosensitizer (MB) does not lead to higher degrees of cell death compared to the type I (CV) photosensitizer. In fact, CV kills cells with the same efficiency as MB, generating at least 10 times fewer photoinduced reactive species. Therefore, subcellular localization is indeed more important than photochemical reactivity in terms of overall cell killing, with mitochondrial localization representing a highly desirable property for the development of more specific/efficient photosensitizers for photodynamic therapy applications. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Foram examinados 100 bezerros da raça Nelore com 6 a 12 meses de idade, distribuídos em: grupo controle (G1; 50 bezerros sadios) e grupo fotossensibilização (G2; n= 50). As amostras de sangue foram coletadas 12 a 24 horas após o início da dermatite (M1) e 15 a 30 dias após (M2), época da cura das lesões cutâneas. O proteinograma sérico foi obtido por eletroforese em gel de acrilamida. em todos os bezerros foram identificadas 18 proteínas com pesos moleculares (PM) entre 16.000 a 189.000 dáltons (Da). em M1 e M2, as concentrações séricas das proteínas de PM 115.000Da (ceruloplasmina), 61.000Da (1-antitripsina), 45.000Da (haptoglobina) e 40.000Da (glicoproteína ácida) foram significativamente maiores em bezerros com fotossensibilização hepatógena em comparação com aquelas dos animais do grupo-controle. A determinação dos teores séricos de proteínas de fase aguda pode ser útil no monitoramento da progressão da fotossensibilização hepatógena em bovinos, inclusive orientando possíveis alterações em procedimentos terapêuticos.
Resumo:
The purpose of this study was to evaluate the effect of lethal photosensitization and guided bone regeneration (GBR) on the treatment of ligature-induced peri-implantitis in different implant surfaces. The treatment outcome was evaluated by clinical and histometric methods. A total of 40 dental implants with four different surface coatings (10 commercially pure titanium surface (cpTi); 10 titanium plasma-sprayed (TPS); 10 acid-etched surface; 10 surface-oxide sandblasted) were inserted into five mongrel dogs. After 3 months, the animals with ligature-induced peri-implantitis were subjected to surgical treatment using a split-mouth design. The controls were treated by debridment and GBR, while the test side received an additional therapy with photosensitization, using a GaAlAs diode laser, with a wavelength of 830 nm and a power output of 50 mW for 80 s (4 J/cm(2)), and sensitized toluidine blue O (100 mu g/ml). The animals were sacrificed 5 months after therapy. The control sites presented an earlier exposition of the membranes on all coating surfaces, while the test group presented a higher bone height gain. Re-osseointegration ranged between 41.9% for the cpTi surface and 31.19% for the TPS surface in the test sites; however differences were not achieved between the surfaces. The lethal photosensitization associated with GBR allowed for better re-osseointegration at the area adjacent to the peri-implant defect regardless of the implant surface.
Resumo:
The aim of this study was to evaluate the effects of the laser radiation (685 nm) associated with photosensitizers on viability of different species of Candida genus. Suspensions of Candida albicans, Candida dubliniensis, Candida krusei and Candida tropicalis, containing 106 viable cells per milliliter were obtained with the aid of a Neubauer's chamber. From each species, 10 samples of the cell suspension were irradiated with diode laser (685 nm) with 28 J/cm(2) in the presence of methylene blue (0.1 mg/ml), 10 samples were only treated with methylene blue, 10 samples were irradiated with laser in the absence of the dye, 10 samples were treated with the dye and irradiated with laser light and 10 samples were exposed to neither the laser light nor to the methylene blue dye. From each sample, serial dilutions of 10(-2) and 10(-3) were obtained and aliquots of 0.1 ml of each dilution were plated in duplicate on Sabouraud dextrose agar. After incubation at 37 degrees C for 48 h, the number of colony-forming units (CFU/ml) was obtained and data were submitted to ANOVA and Tukey's test (p < 0.05). Laser radiation in the presence of methylene blue reduced the number of CFU/ml in 88.6% for C. albicans, 84.8% for C. dubliniensis, 91.6% for C krusei and 82.3% for C tropicalis. Despite of this, only laser radiation or methylene blue did not reduce significantly the number of CFU/ml of Candida samples, except for C tropicalis. It could be concluded that the photo activation of methylene blue by the red laser radiation at 685 nm presented fungicide effect on all Candida species studied. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Background: the purpose of this pilot study was to evaluate the healing potential and reosseointegration in ligature-induced peri-implantitis defects adjacent to various dental implant surfaces following lethal photosensitization.Methods: A total of 36 dental implants with 4 different surface coatings (9 commercially pure titanium surface [CPTi]; 9 titanium plasma-sprayed [TPS]; 9 hydroxyapatite [HA]; and 9 acid-etched [AE]) were inserted in 6 male mongrel dogs 3 months after extraction of mandibular premolars. After a 2-month period of ligature-induced peri-implantitis and 12 months of natural peri-implantitis progression, only 19 dental implants remained. The dogs underwent surgical debridement of the remaining dental implant sites and lethal photosensitization by combination of toluidine blue O (100 mug/ml) and irradiation with diode laser. All exposed dental implant surfaces and bone craters were meticulously cleaned by mechanical means, submitted to photodynamic therapy, and guided bone regeneration (GBR) using expanded polytetrafluoroethylene (ePTFE) membranes. Five months later, biopsies of the implant sites were dissected and prepared for ground sectioning and analysis.Results: the percentage of bone fill was HA: 48.28 +/- 15.00; TPS: 39.54 +/- 12.34; AE: 26.88 +/- 22.16; and CPTi: 26.70 +/- 16.50. The percentage of reosseointegration was TPS: 25.25 +/- 11.96; CPTi: 24.91 +/- 17.78; AE: 17.30 +/- 15.41; and HA: 15.83 +/- 9.64.Conclusion: These data suggest that lethal photosensitization may have potential in the treatment of peri-implantitis.
Resumo:
As part of a study of plants involved in crystal-associated hepatogenous photosensitization diseases, samples of Brachiaria decumbens and Panicum dichotomiflorum on which cattle and goats had recently been photosensitized were analyzed. The level of saponins associated with these photosensitization outbreaks were determined by GC-MS. Only low levels of Pithomyces chartarum spores were present on the B decumbens, and all isolates obtained failed to produce sporidesmin.
Resumo:
This pilot study evaluated, by culture testing, the effectiveness of lethal photosensitization for the microbiological treatment of peri-implantitis in dogs. Experimental peri-implantitis was induced by ligature placement for 2 months. Following ligature removal, plaque control was instituted by scrubbing with 0.12% chlorhexidine daily for 12 months. Subsequently, mucoperiosteal flaps were elevated for scaling the implant surface. Microbial samples were obtained with paper points before and after treatment of implant surfaces by means of 100 microg/ml toluidine blue O (TBO,) and were exposed, for 80 s, to light with a wavelength of 685 nm from a 50 mW GaAlAs diode laser. The mean initial and final bacterial counts were 7.22 +/- 0.20 and 6.84 +/- 0.44 CFU/ml, respectively for TVC (P < 0.0001); 6.19 +/- 0.45 and 3.14 +/- 3.29 CFU/ml for P. intermedia/nigrescens (P = 0.001); 5.98 +/- 0.38 and 1.69 +/- 2.90 CFU/ml for Fusobacterium spp. (P = 0.001); and 6.07 +/- 0.22 to 1.69 +/- 2.94 CFU/ml for beta-hemolytic Streptococcus (P = 0.0039). It may be concluded that lethal photosensitization resulted in a reduction of the bacterial count. Complete elimination of bacteria was achieved in some samples.
Resumo:
Ground state interactions and excited states and transients formed after photolysis and photosensitization of 2-ethylaminodiphenylborinate (2APB) were studied by various techniques. The UV spectrum shows a large absorption band at 235 nm (epsilon = 14,500 M-1 cm(-1)) with a shoulder at 260 nm. The fluorescence spectra show increasing emission intensity with maximum at 300 nm, which shifts to the red up to 10(-3) M concentrations. At higher concentrations, the emission intensity decreases, probably due to the formation of aggregates. UV excitation in deareated solutions shows the formation of two transients at 300 and 360 nm. The latter has a lifetime of 5.7 mu s in ethanol and is totally quenched in the presence of oxygen and assigned to the triplet state of 2APB. The 300 nm peak is not affected by oxygen, has a lifetime in the order of milliseconds, and corresponds to a boron-centered radical species originated from the singlet state. A boron radical can also be obtained by electron transfer from triplet Safranine to the borinate (k(q) = 9.7 x 10(7) M-1 s(-1)) forming the semioxidized form of the dye. EPR experiments using DMPO show that dye-sensitized and direct UV-photolysis of 2ABP renders initially arylboron-centered radicals. (C) 2012 Elsevier B.V. All rights reserved.