899 resultados para Photonic Bandgap(PBG)
Resumo:
In this thesis, we explore the design, computation, and experimental analysis of photonic crystals, with a special emphasis on structures and devices that make a connection with practically realizable systems. First, we analyze the propenies of photonic-crystal: periodic dielectric structures that have a band gap for propagation. The band gap of periodically loaded air column on a dielectric substrate is computed using Eigen solvers in a plane wave basis. Then this idea is extended to planar filters and antennas at microwave regime. The main objectives covered in this thesis are:• Computation of Band Gap origin in Photonic crystal with the abet of Maxwell's equation and Bloch-Floquet's theorem • Extension of Band Gap to Planar structures at microwave regime • Predict the dielectric constant - synthesized dieletric cmstant of the substrates when loaded with Photonic Band Gap (PBG) structures in a microstrip transmission line • Identify the resonant characteristic of the PBG cell and extract the equivalent circuit based on PBG cell and substrate parameters for microstrip transmission line • Miniaturize PBG as Defected Ground Structures (DGS) and use the property to be implemented in planar filters with microstrip transmission line • Extended the band stop effect of PBG / DGS to coplanar waveguide and asymmetric coplanar waveguide. • Formulate design equations for the PBG / DGS filters • Use these PBG / DGS ground plane as ground plane of microstrip antennas • Analysis of filters and antennas using FDID method
Resumo:
Filters and other devices using photonic bandgap (PBG) theory are typically implemented in microstrip lines by etching periodic holes on the ground plane of the microstrip. The period of such several holes corresponds to nearly half the guided wavelength of the transmission line. In this paper we study the effects of miniaturization of the PBG device by meandering the microstrip line about one single hole in the ground plane. A comparison of the S-parameters and dispersion behavior of the modified geometry and a conventional PBG device with a straight microstrip line shows that these devices have similar behaviors.
Resumo:
The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Pade approximation. The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated. The resonant frequencies and quality factors are calculated for PCs with different defects. The numerical results show that it is possible to modulate the location, width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor.
Resumo:
We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 μm etc. After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non-return to zero (NRZ) data signals over a 30 m 7-cell HC-PBGF using the offset mode launching method. In another experiment, a short piece of 19-cell HC-PBGF was used to transmit two 20 Gbit/s NRZ channels using a spatial light modulator for precise mode excitation. Bit-error-ratio (BER) performances below the forward-error-correction (FEC) threshold limit (3.3×10-3) are confirmed for both data channels when they propagate simultaneously. © 2013 IEEE.
Resumo:
A highly birefringent hollow-core photonic bandgap fiber based on Topas cyclic olefin copolymer is designed. The rhombic hollow-core with rounded corners is formed by omitting four central air holes of the cladding structure. The guided modes, birefringence and confinement loss of the fiber are investigated by using the full-vector finite element method. A high phase birefringence of the order of 10(-3), a group birefringence of the order of 10(-2) and confinement loss less than 0.1 dB/km are obtained at the central wavelength (1.55 mu m) range of the bandgap for fiber with seven rings of air holes in the cladding region. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We address the bandgap effect and the thermo-optical response of high-index liquid crystal (LC) infiltrated in photonic crystal fibers (PCF) and in hybrid photonic crystal fibers (HPCF). The PCF and HPCF consist of solid-core microstructured optical fibers with hexagonal lattice of air-holes or holes filled with LC. The HPCF is built from the PCF design by changing its cladding microstructure only in a horizontal central line by including large holes filled with high-index material. The HPCF supports propagating optical modes by two physical effects: the modified total internal reflection (mTIR) and the photonic bandgap (PBG). Nevertheless conventional PCF propagates light by the mTIR effect if holes are filled with low refractive index material or by the bandgap effect if the microstructure of holes is filled with high refractive-index material. The presence of a line of holes with high-index LC determines that low-loss optical propagation only occurs on the bandgap condition. The considered nematic liquid crystal E7 is an anisotropic uniaxial media with large thermo-optic coefficient; consequently temperature changes cause remarkable shifts in the transmission spectrums allowing thermal tunability of the bandgaps. Photonic bandgap guidance and thermally induced changes in the transmission spectrum were numerically investigated by using a computational program based on the beam propagation method. © 2010 SPIE.
Resumo:
Design and development of a photonic bandgap (PBG)-assisted shared-aperture dual-band orthogonal aperture-fed rectangular microstrip patch antenna element, which is suitable for a portable very small aperture terminal (VSAT), are presented in this paper. The dual-band dual-polarized antenna element achieves 21% input impedance bandwidth at the S- and C-bands. A comparison of the antenna with and without 2D PBG grids shows that the inclusion of PBG structures (PBGSs) improves the antenna performances. (c) 2005 Wiley Periodicals, Inc.
Resumo:
The first demonstration of a hollow core photonic bandgap fiber suitable for high-rate data transmission at 2µm is presented. Using a custom built Thulium doped fiber amplifier, error-free 8Gbit/s transmission in an optically amplified data channel at 2008nm is reported for the first time.
Resumo:
The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 μm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a >150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008 nm over 290 m of 19 cell HC-PBGF is reported. © 2013 Optical Society of America.
Resumo:
World's first demonstration of WDM transmission in a HC-PBGF at the predicted low loss region of 2m is presented. A total capacity of 16 Gbit/s is achieved using 1×8.5 Gbit/s and 3×2.5 Gbit/s channels modulated using NRZ OOK over 290 meters of hollow core fiber. © 2013 OSA.
Resumo:
Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules. In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.
Resumo:
Recently, planar antennas have been studied due to their characteristics as well as the advantages that they offers when compared with another types of antennas. In the mobile communications area, the need for this kind of antennas have became each time bigger due to the intense increase of the mobile communications this sector. That needs of antennas which operate in multifrequency and wide bandwidth. The microstrip antennas presents narrow bandwidth due the loss in the dielectric generated by radiation. Another limitation is the radiation pattern degradation due the generation of surface waves in the substrate. In this work some used techniques to minimize the disadvantages (previously mentioned) of the use of microstrip antennas are presented, those are: substrates with PBG material - Photonic Bandgap, multilayer antennas and with stacked patches. The developed analysis in this work used the TTL - Transverse Transmission Line method in the domain of Fourier transform, that uses a component of propagation in the y direction (transverse to the direction real of propagation z), treating the general equations of electric and magnetic field as functions of Ey and Hy. One of the advantages of this method is the simplification of the field equations. therefore the amount of equations lesser must the fields in directions x and z be in function of components Ey and Hy. It will be presented an brief study of the main theories that explain the superconductivity phenomenon. The BCS theory. London Equations and Two Fluids model will be the theories that will give support the application of the superconductors in the microfita antennas. The inclusion of the superconductor patch is made using the resistive complex contour condition. This work has as objective the application of the TTL method to microstrip structures with single and multilayers of rectangular patches, to obtaining the resonance frequency and radiation pattern of each structure