990 resultados para Photon absorption
Resumo:
We have studied the nonlinear optical properties of nanolayered Se/As2S3 film with a modulation period of 10 nm and a total thickness of 1.15 mu m at two [1064 nm (8 ns) and 800 nm (20 ps)] wavelengths using the standard Z-scan technique. Three-photon absorption was observed at off-resonant excitation and saturation of two-photon absorption at quasiresonant excitation. The observation of the saturation of two-photon absorption is because the pulse duration is shorter than the thermalization time of the photocreated carriers in their bands and three-photon absorption is due to high excitation irradiance. (c) 2007 American Institute of Physics.
Resumo:
An adaptive regularization algorithm that combines elementwise photon absorption and data misfit is proposed to stabilize the non-linear ill-posed inverse problem. The diffuse photon distribution is low near the target compared to the normal region. A Hessian is proposed based on light and tissue interaction, and is estimated using adjoint method by distributing the sources inside the discretized domain. As iteration progresses, the photon absorption near the inhomogeneity becomes high and carries more weightage to the regularization matrix. The domain's interior photon absorption and misfit based adaptive regularization method improves quality of the reconstructed Diffuse Optical Tomographic images.
Resumo:
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.
Resumo:
Combination of femtosecond Kerr, two photon absorption, and impulsive stimulated Raman scattering (ISRS) experiments have been carried out to investigate the effect of pulse energy and crystal temperature on the generation of coherent polaritons and phonons in 〈110〉 cut ZnTe single crystals of three different resistivities. We demonstrate that the effect of two photon induced free carriers on the creation of both the polaritons and phonons is largest at 4 K where the free carrier lifetime is enhanced. The temperature dependant ISRS on high and low purity ZnTe crystals allows us to unambiguously assign the phonon mode at 3.5 THz to the longitudinal acoustic mode at X-point in the Brillouin zone, LA(X).
Resumo:
We report the nonlinear optical absorption studies in two differently sized water-soluble cadmium telluride quantum dot (QD) samples, exhibiting first excitonic absorption peaks at 493 nm and 551 nm, respectively. An optical limiting behavior is observed for near-resonant excitation at 532 nm using nanosecond laser pulses, originating from the effective two-photon absorption (TPA) mechanism. The effective TPA coefficient (beta(eff)) is measured to be in the range of 10(-12) m/W. This is one order of magnitude higher than the TPA coefficient (beta) reported for off-resonant excitation. At this excitation wavelength, the smaller QD shows a relatively weaker photoluminescence and stronger nonlinear absorption. (C) 2012 American Institute of Physics. [doi:10.1063/1.3687695]
Resumo:
High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.
Resumo:
Ferroelectric c-oriented Bi2VO5.5 (BVO) thin films (thickness approximate to 300 nm) were fabricated by pulsed laser deposition on corning glass substrates. Nonlinear refractive index (n(2)) and two photon absorption coefficient (beta) were measured by Z-scan technique at 532 nm wavelength delivering pulses with 10 ns duration. Relatively large values of n(2) = 2.05 +/- 0.2 x 10(-10) cm(2)/W and beta = 9.36 +/- 0.3 cm/MW were obtained for BVO thin films. Origin of the large optical nonlinearities in BVO thin films was discussed based on bond-orbital theory of transition metal oxides. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Near-infrared to ultraviolet upconversion luminescence was observed in the Pr3+ :Y2SiO5 crystal with 120 fs, 800 mn infrared laser irradiation. The observed emissions at around 270 nm and 305 nm could be assigned to 5d -> 4f transitions of Pr3+ ions. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to simultaneous three-photon absorption induced upconversion luminescence. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW(-1) and 7.102 x 10(-3) cm(3) GW(-2), respectively. The two- and three-photon cross sections were calculated to be 1.189 x 10(-51) cm(4) s and 1.040 x 10(-80) cm(6) s(2), respectively. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The three-photon absorption effect (3PA) of two novel symmetrical charge transfer fluorene-based molecules (abbreviated as BASF and BMOSF) has been determined by using a Q-switched Nd:YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 84 x 10(-78) and 114 x 10(-78) cm(6) s(2), respectively. The geometries and electronic excitations of these two molecules are systematically studied by PM3 and ZINDO/S methods. The relationships between 3PA cross-sections and intramolecular charge transfer are discussed micromechanically. The experimental and theoretical results have shown that the larger intramolecular charge transfer, which was characterized by the charge density difference between the ground state (SO) and the first excited state (S-I), the greater enhancement of the 3PA cross-sections. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two novel symmetrical charge transfer fluorene derivatives (abbreviated as BCZF and BVCZF) with carbazole end-group as the donor moieties have been synthesized. Three-photon absorption cross-sections of these two compounds have been determined by using a Q-switched Nd:YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 140 x 10(-78) and 400 x 10(-78) cm(6) s(2) for BCZF and BVCZF, respectively. The geometries, electronic structures and electronic spectra of these two compounds are systematically studied by AM1 and ZINDO/S methods. On the basis of correct UV-vis spectra, the influence of different molecular structure on three-photon absorption cross-sections is discussed micromechanically. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Three-photon absorption (3PA) of two fluorene-based molecules with D-pi-D structural motifs (abbreviated as BPAF and BCZF) has been determined by using a Q-switched Nd: YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 222 and 140 x 10(-78) cm(6) s(2) for BPAF and BCZF, respectively. AM1 calculations show that attaching different donors changes the charge density distribution of the fluorene skeleton, and it is observed that the 3PA cross-section can be enhanced with increasing intramolecular charge transfer character, measured by the parameter Delta p(1)/Delta p(2)/Delta p(1)'. (c) 2005 Elsevier B.V. All fights reserved.
Resumo:
A novel symmetrical charge transfer fluorene-based compound 2,7-bis (4-methoxystyryl)-9, 9-bis (2-ethylhexyl)-9H-fluorene (abbreviated as BMOSF) was synthesized and its nonlinear absorption was investigated using two different laser systems: a 140-fs, 800-nm Ti:sapphire laser operating at 1-kHz repetition rate and a 38-ps, 1064-nm Nd:YAG pulsed laser operating at 10-Hz repetition rate, respectively. Unique nonlinear absorption properties in this new compound were observed that rise from multiphoton absorption. The nonlinear absorption coefficients were measured to be 6.02
Resumo:
The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped wish 38ps pulses at 1064nm in DMF. The measured 3PA cross-sections are 152x10(-78)cm(6)s(2) and 139x10(-78)cm(6)s(2), respectively. The optimized structures were obtained by AM1 calculations and the results indicate that these two molecules show nonplanar structures, and attaching different donors has different effects on the molecular structure. The charge density distributions during the excitation were also systematically studied by using AM1 method. In addition, an obvious optical power limiting effect induced by 3PA has been demonstrated for both derivatives.