996 resultados para Photoluminescence spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of photoluminescence spectroscopy and lifetime measurements on thin film hybrid arrays of semiconductor quantum dots and metal nanoparticles embedded in a block copolymer template. The intensity of emission as well as the measured lifetime would be controlled by varying the volume fraction and location of gold nanoparticles in the matrix. We demonstrate the ability to both enhance and quench the luminescence in the hybrids as compared to the quantum dot array films while simultaneously engineering large reduction in luminescence lifetime with incorporation of gold nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3483162].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of hydrogenation on the photoluminescence (PL) of InP : Mg, InP : Zn and undoped n-InP is presented. An increase in the near band edge pl intensity due to passivation of non-radiative centers was observed in all the samples. A donor - acceptor pair transition was observed before hydrogenation in the InP : Mg sample and after hydrogenation in the InP : Zn sample due to the acceptor deactivation. In n-InP the enhancement of donor bound exciton after hydrogenation points to the absence of donor passivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role played by defects in bringing out n-type conduction in Ge20Se80-xBix and Ge20Se70-xBixTe10 glasses is using investigated photoluminescence (PL) spectroscopy. It was found that for both the systems, the compositions at lower Bi content exhibit luminescence with fine features associated while the compositions that show n-type conduction do not exhibit luminescence. The identification of the associated fine features, carried out by deconvoluting the experimental spectra, reveals that Bi addition brings out a relative diminishing in D+ defects as compared to D- ones. The study gives an overall indication for the role played by native defects in bringing out n-type conduction in Bi-doped glasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconducting chalcogenide glasses in the systems GeSe and GeSeTe with the addition of bismuth show unusual phenomena of p - to - n transition. Samples for characterization were prepared in bulk form by melt-quenching technique, with increasing Bi at. % to replace selenium. Photoluminescence (PL) spectroscopic studies on all the samples were carried out at 4.2K using an Ar-Ion laser for illuminating the samples. The laser power used was 200mw. Both the systems show a decrease in the intensity of PL signal with increasing Bi content. This interesting behavior is discussed on the basis of a charged defect model for chalcogenide glasses, proposed by Mott, Davis and Street (MDS). The effect of bismuth addition on these charged defects is also discussed to explain the carrier type reversal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li [Appl. Phys. Lett. 91, 232115 (2007)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Er-doped silicon-rich silicon nitride (SRN) films were deposited on silicon substrate by an RF magnetron reaction sputtering system. After high temperature annealing, the films show intense photoluminescence in both the visible and infrared regions. Besides broad-band luminescence centered at 780 nm which originates from silicon nanocrystals, resolved peaks due to transitions from all high energy levels up to ~2H_(11/2) to the ground state of Er~(3+) are observed. Raman spectra and HRTEM measurements have been performed to investigate the structure of the films, and possible excitation processes are discussed.