964 resultados para Photochemical micromolar reactor
Resumo:
: Reactor micromolar fotoquímico. La aplicación consiste en un sistema que permite irradiar de forma controlada un pequeño volumen de cualquier tipo de sistema químico reactivo (homogéneo o heterogéneo) tanto con lámparas artificiales como con luz solar, disponiendo de espejos calibrados concentradores de la irradiación. El dispositivo dispone de un sistema totalmente automatizado que recoge a través de sensores adecuados diversos parámetros importantes para el control de la reacción en estudio: el tiempo de reacción, la irradiación incidente en función del tiempo y la temperatura. Además permite programar la temperatura en función del tiempo, y la irradiación proveniente de lámparas. Debido a la posibilidad de usar contenedores cerrados adaptables a diversas técnicas analíticas (RMN, UV, IR, Gases- Masas), el equipo permite estudiar reacciones fotoquímicas en tiempo real o muy corto, sin perturbar el medio de reacción y controlando automáticamente todos los parámetros externos que influyen en la reacción.
Resumo:
Superoxide(O2-) is a reactive free radical that rapidly undergoes disproportionation to hydrogen peroxide and oxygen. This property makes preparation of superoxide standard for instrument calibration difficult. McDowell et al. (1983) showed photolysis of ketone and alcohol as a convenient method to generate superoxide through triplet and radical intermediates reacting with molecular oxygen. This study expands on this past work and investigates detailed mechanism of the reaction.
Resumo:
At the cashew nut processing industry it is often the generation of wastewaters containing high content of toxic organic compounds. The presence of these compounds is due mainly to the so called liquid of the cashew nut (CNSL). CNSL, as it is commercially known in Brazil, is the liquid of the cashew nut. It looks like an oil with dark brown color, viscous and presents a high toxicity index due to the chemical composition, i.e. phenol compounds, such as anacardic acid, cardol, 2-methyl cardol and monophenol (cardanol). These compounds are bio resistant to the conventional treatments. Furthermore, the corresponding wastewaters present high content of TOC (total organic carbon). Therefore due to the high degree of toxicity it is very important to study and develop treatments of these wastewaters before discharge to the environmental. This research aims to decompose these compounds using advanced oxidative processes (AOP) based on the photo-Fenton system. The advantage of this system is the fast and non-selective oxidation promoted by the hydroxyl radicals (●OH), that is under determined conditions can totally convert the organic pollutants to CO2 and H2O. In order to evaluate the decomposition of the organic charge system samples of the real wastewater od a processing cashew nut industry were taken. This industry was located at the country of the state of Rio Grande do Norte. The experiments were carried out with a photochemical annular reactor equipped with UV (ultra violet) lamp. Based on preliminary experiments, a Doehlert experimental design was defined to optimize the concentrations of H2O2 and Fe(II) with a total of 13 runs. The experimental conditions were set to pH equal to 3 and temperature of 30°C. The power of the lamps applied was 80W, 125W and 250W. To evaluate the decomposition rate measures of the TOC were accomplished during 4 hours of experiment. According to the results, the organic removal obtained in terms of TOC was 80% minimum and 95% maximum. Furthermore, it was gotten a minimum time of 49 minutes for the removal of 30% of the initial TOC. Based on the obtained experimental results, the photo-Fenton system presents a very satisfactory performance as a complementary treatment of the wastewater studied
Resumo:
Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.
Resumo:
Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.
Resumo:
Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED) associated with an advanced oxidation process (photo-Fenton) was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.
Resumo:
The solar driven photo-Fenton process for treating water containing phenol as a contaminant has been evaluated by means of pilot-scale experiments with a parabolic trough solar reactor (PTR). The effects of Fe(II) (0.04-1.0 mmol L(-1)), H(2)O(2) (7-270 mmol L(-1)), initial phenol concentration (100 and 500 mg C L(-1)), solar radiation, and operation mode (batch and fed-batch) on the process efficiency were investigated. More than 90% of the dissolved organic carbon (DOC) was removed within 3 hours of irradiation or less, a performance equivalent to that of artificially-irradiated reactors, indicating that solar light can be used either as an effective complementary or as an alternative source of photons for the photo-Fenton degradation process. A non-linear multivariable model based on a neural network was fit to the experimental results of batch-mode experiments in order to evaluate the relative importance of the process variables considered on the DOC removal over the reaction time. This included solar radiation, which is not a controlled variable. The observed behavior of the system in batch-mode was compared with fed-batch experiments carried out under similar conditions. The main contribution of the study consists of the results from experiments under different conditions and the discussion of the system behavior. Both constitute important information for the design and scale-up of solar radiation-based photodegradation processes.
Resumo:
Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.
Resumo:
Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.
Resumo:
Some bacteria common in anaerobic digestion process can ferment a broad variety of organic compounds to organic acids, alcohols, and hydrogen, which can be used as biofuels. Researches are necessary to control the microbial interactions in favor of the alcohol production, as intermediary products of the anaerobic digestion of organic compounds. This paper reports on the effect of buffering capacity on the production of organic acids and alcohols from wastewater by a natural mixed bacterial culture. The hypothesis tested was that the increase of the buffering capacity by supplementation of sodium bicarbonate in the influent results in benefits for alcohol production by anaerobic fermentation of wastewater. When the influent was not supplemented with sodium bicarbonate, the chemical oxygen demand (COD)-ethanol and COD-methanol detected in the effluent corresponded to 22.5 and 12.7 % of the COD-sucrose consumed. Otherwise, when the reactor was fed with influent containing 0.5 g/L of sodium bicarbonate, the COD-ethanol and COD-methanol were effluents that corresponded to 39.2 and 29.6 % of the COD-sucrose consumed. Therefore, the alcohol production by supplementation of the influent with sodium bicarbonate was 33.6 % higher than the fermentation of the influent without sodium bicarbonate.
Resumo:
The photocatalytic degradation of phenol in aqueous suspensions of TiO2 under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen-Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.
Resumo:
This work describes a photo-reactor to perform in line degradation of organic compounds by photo-Fenton reaction using Sequential Injection Analysis (SIA) system. A copper phthalocyanine-3,4',4²,4²¢-tetrasulfonic acid tetrasodium salt dye solution was used as a model compound for the phthalocyanine family, whose pigments have a large use in automotive coatings industry. Based on preliminary tests, 97% of color removal was obtained from a solution containing 20 µmol L-1 of this dye.
Resumo:
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in the life cycle of the Trypanosoma cruzi, and an immobilized enzyme reactor (IMER) has been developed for use in the on-line screening for GAPDH inhibitors. An IMER containing human GAPDH has been previously reported; however, these conditions produced a T. cruzi GAPDH-IMER with poor activity and stability. The factors affecting the stability of the human and T. cruzi GAPDHs in the immobilization process and the influence of pH and buffer type on the stability and activity of the IMERs have been investigated. The resulting T. cruzi GAPDH-IMER was coupled to an analytical octyl column, which was used to achieve chromatographic separation of NAD+ from NADH. The production of NADH stimulated by D-glyceraldehyde-3-phosphate was used to investigate the activity and kinetic parameters of the immobilized T. cruzi GAPDH. The Michaelis-Menten constant (K-m) values determined for D-glyceraldehyde-3-phosphate and NAD(+) were K-m = 0.5 +/- 0.05 mM and 0.648 +/- 0.08 mM, respectively, which were consistent with the values obtained using the non-immobilized enzyme.
Resumo:
This study proposes a simplified mathematical model to describe the processes occurring in an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater. The reactor, subjected to rising organic loading rates, contained biomass immobilized cubic polyurethane foam matrices, and was operated at 32 degrees C +/- 2 degrees C, using 24-h batch cycles. In the adaptation period, the reactor was fed with synthetic substrate for 46 days and was operated without agitation. Whereas agitation was raised to 500 rpm, the organic loading rate (OLR) rose from 0.3 g chemical oxygen demand (COD) . L(-1) . day(-1) to 1.2 g COD . L(-1) . day(-1). The ASBBR was fed fat-rich wastewater (dairy wastewater), in an operation period lasting for 116 days, during which four operational conditions (OCs) were tested: 1.1 +/- 0.2 g COD . L(-1) . day(-1) (OC1), 4.5 +/- 0.4 g COD . L(-1) . day(-1) (OC2), 8.0 +/- 0.8 g COD . L(-1) . day(-1) (OC3), and 12.1 +/- 2.4 g COD . L(-1) . day(-1) (OC4). The bicarbonate alkalinity (BA)/COD supplementation ratio was 1:1 at OC1, 1:2 at OC2, and 1:3 at OC3 and OC4. Total COD removal efficiencies were higher than 90%, with a constant production of bicarbonate alkalinity, in all OCs tested. After the process reached stability, temporal profiles of substrate consumption were obtained. Based on these experimental data a simplified first-order model was fit, making possible the inference of kinetic parameters. A simplified mathematical model correlating soluble COD with volatile fatty acids (VFA) was also proposed, and through it the consumption rates of intermediate products as propionic and acetic acid were inferred. Results showed that the microbial consortium worked properly and high efficiencies were obtained, even with high initial substrate concentrations, which led to the accumulation of intermediate metabolites and caused low specific consumption rates.
Resumo:
An environmentally friendly analytical procedure with high sensitivity for determination of carbaryl pesticide in natural waters was developed. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. A long pathlength (100 cm) flow cell based on a liquid core waveguide (LCW) was employed to increase the sensitivity in detection of the indophenol formed from the reaction between carbaryl and p-aminophenol (PAP). A clean-up step based on cloud-point extraction was explored to remove the interfering organic matter, avoiding the use of toxic organic solvents. A linear response was observed within the range 5-200 mu g L(-1) and the detection limit, coefficient of variation and sampling rate were estimated as 1.7 mu g L(-1) (99.7% confidence level), 0.7% (n=20) and 55 determinations per hour, respectively. The reagents consumption was 1.9 mu g of PAP and 5.7 mu g of potassium metaperiodate, with volume of 2.6 mL of effluent per determination. The proposed procedure was selective for the determination of carbaryl, without interference from other carbamate pesticides. Recoveries within 84% and 104% were estimated for carbaryl spiked to water samples and the results obtained were also in agreement with those found by a batch spectrophotometric procedure at the 95% confidence level. The waste of the analytical procedure was treated with potassium persulphate and ultraviolet irradiation, yielding a colorless residue and a decrease of 94% of total organic carbon. In addition, the residue after treatment was not toxic for Vibrio fischeri bacteria. (c) 2010 Elsevier B.V. All rights reserved.