979 resultados para Photo-assisted electrochemical degradation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results concerning the degradation of the pesticide carbaryl comparing two methods: electrochemical (EC) and photo-assisted electrochemical (PAEC). The experimental variables of applied current density, electrolyte flow-rate and initial carbaryl concentration were investigated. The results demonstrate that the electrochemical degradation of carbaryl was greatly enhanced when simultaneous UV light was applied. The greatest difference between the PAEC and EC method was apparent when lower current densities were applied. The extent of COD removal was much enhanced for the combined method, independent of the applied current density. It should be noted that the complete removal of carbaryl was achieved with out the need to add NaCl to the reaction mixture, avoiding the risk of chlorinated organic species formation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a degradation study of the pesticide atrazine using photo-assisted electrochemical methods at a dimensionally stable anode (DSA (R)) of nominal composition Ti/Ru(0.3)Ti(0.7)O(2) in a prototype reactor. The effects of current density, electrolyte flow-rate, as well as the use of different atrazine concentrations are reported. The results indicate that the energy consumption is substantially reduced for the combined photochemical and electrochemical processes when compared to the isolated systems. It is observed that complete atrazine removal is achieved at low current densities when using the combined method, thus reducing the energy required to operate the electrochemical system. The results also include the investigation of the phytotoxicity of the treated solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, photo-assisted electrochemical degradation of real textile wastewater was performed. Degradation assays were performed at constant current (40 mA cm(-2)) in a combined electro/photochemical flow-cell using a Ti/Ru(0.3)Ti(0.7)O(2) DSA(R) type electrode. The results show that the method is capable of removing color and chemical oxygen demand (COD) from the effluent. Additionally, the effect of initial pH and type of supporting electrolyte (Na(2)SO(4) or NaCl) was investigated. The principal figures of merit used in this study were COD removal and color removal (605 nm). The results show that up to 72% color and up to 59% COD removal in 120 min is possible under the operating conditions employed. Studies of the phytotoxicity of the wastewater before and after the photo-assisted degradation assays are also presented and the results demonstrate that the toxicity of the effluent is dependent on the length of electrolysis time and the treatment procedure employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, electrochemical and photo-assisted electrochemical processes are used for color, total organic carbon (TOC) and chemical oxygen demand (COD) degradation of one of the most abundant and strongly colored industrial wastewaters, which results from the dyeing of fibers and fabrics in the textile industry. The experiments were carried out in an 18L pilot-scale tubular low reactor with 70% TiO2/30% RuO2 DSA. A synthetic acid blue 40 solution and real dye house wastewater, containing the same dye, were used for the experiments. By using current density of 80 mA cm(-2) electrochemical process has the capability to remove 80% of color, 46% of TOC and 69% of COD. When used the photochemical process with 4.6 mW cm(-2) of 254nm UV-C radiation to assist the electrolysis, has been obtained 90% of color, 64% of TOC and 60% of COD removal in 90 minutes of processing; furthermore, 70% of initial color was degraded within the first 15 minutes. Experimental runs using dye house wastewater resulted in 78% of color, 26% of TOC and 49% of COD in electrolysis at 80 mA cm(-2) and 90 min; additionally, when photo-assisted, electrolysis resulted in removals of 85% of color, 42% of TOC and 58% of COD. For the operational conditions used in this study, color, TOC and COD showed pseudo-first-order decaying profiles. Apparent rate constants for degradation of TOC and COD were improved by one order of magnitude when the photo-electrochemical process was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel laponite RD clay-based Fe nanocomposite (Fe-Lap-RD) has been successfully synthesized through a reaction between a solution of iron salt and an aqueous dispersion of laponite RD clay. The X-ray diffraction (XRD) results reveal that the Fe-Lap-RD mainly consists of Fe2O3 (maghemite) and Fe2Si4O10(OH)2 (iron silicate hydroxide), which have tetragonal and monoclinic structures, respectively, and has a high specific surface area as well as a high pore volume. The photo-catalytic activity of the Fe-Lap-RD was examined in the photo-assisted degradation of an organic azo dye Orange II. It was found that the mineralization of Orange 11 undergoes a slower kinetics than discoloration, and 70% total organic carbon (TOC) of 0.2 mM Orange 11 can be removed in 90 min, implying that the Fe-Lap-RD exhibited a high photo-catalytic activity in the presence of H2O2 and UV light (254 nm) in the photo-assisted degradation of Orange II. In addition, our experiments also illustrate that the Fe-Lap-RD has a long-term stability but is of low cost. This study illustrates the possibility of photo-assisted degradation of organic compounds without the requirements to remove the Fe ions after reaction. Two possible catalytic reaction mechanisms are also proposed. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the results of the degradation of the pesticide atrazine using electrochemical and photo-assisted electrochemical degradation techniques using SnO(2)-containing electrode of nominal composition electrodes of composition Ti/Ru(x)Sni-(x)O(2) (where X = 0.10, 0.15, 0.20, 0.25 and 0.30). The materials were characterized ex situ and in situ in order to correlate the observed atrazine removal rates with electrode morphology/composition. The results obtained demonstrate the effectiveness of the photo-assisted electrochemical degradation. Using purely electrochemical methods the rate of atrazine removal is almost zero at all the electrodes studied. However, the application of photo-assisted degradation results in almost complete atrazine removal in 1 h of electrolysis. The efficiency of atrazine degradation does not seem to be greatly affected by the electrode material or by SnO(2) content, but the overall COD removal is dependent on the SnO(2) content. Overall, the SnO(2)-containing electrodes do not reach the level of COD removal (maximum similar to 21%) seen for the Ti/Ru(0.3)Ti(0.2)O(2) electrode. An interesting correlation between the morphology factor (phi) and chemical oxygen demand removal is observed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report shows an unexpected toxicity decrease during atrazine photoelectrodegradation in the presence of NaCl. Atrazine is a pesticide classified as endocrine disruptor occurring in industrial effluents and agricultural wastewaters. We therefore studied the effects of the degradation method, electrochemical and electrochemical photo-assisted, and of the supporting electrolyte, NaCl and Na2SO4, on the residual toxicity of treated atrazine solutions. We also studied the toxicity of treated atrazine solutions using Results show that at initial concentration of 20 mg L-1, atrazine was completely removed in up to 30 min using 10 mA cm(-2) electrolysis in NaCl medium, regardless of the electrochemical method used. The total organic carbon removal by the photo-assisted method was 82% with NaCl and 95% with Na2SO4. The solution toxicity increased during sole electrochemical treatment in NaCl, as expected. However, the toxicity unexpectedly decreased using the photo-assisted method. This finding is a major discovery because electrochemical treatment with NaCl usually leads to the formation of toxic chlorine-containing organic degradation by-products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced oxidation processes (AOPs) are modern methods using reactive hydroxyl radicals for the mineralization of organic pollutants into simple inorganic compounds, such as CO2 and H2O. Among AOPs electrochemical oxidation (EO) is a method suitable for coloured and turbid wastewaters. The degradation of pollutants occurs on electrocatalytic electrodes. The majority of electrodes contain in their structure either expensive materials (diamond and Pt-group metals) or are toxic for the environment compounds (Sb or Pb). One of the main disadvantages of electrochemical method is the polarization and contamination of electrodes due to the deposition of reaction products on their surface, which results in diminishing of the process efficiency. Ultrasound combined with the electrochemical degradation process eliminates electrode contamination because of the continuous mechanical cleaning effect produced by the formation and collapse of acoustic cavitation bubbles near to the electrode surface. Moreover, high frequency ultrasound generates hydroxyl radicals at water sonolysis. Ultrasound-assisted EO is a non-selective method for oxidation of different organic compounds with high degradation efficiencies. The aim of this research was to develop novel sustainable and cost-effective electrodes working as electrocatalysts and test their activity in electrocatalytic oxidation of organic compounds such as dyes and organic acids. Moreover, the goal of the research was to enhance the efficiency of electrocatalytic degradation processes by assisting it with ultrasound in order to eliminate the main drawbacks of a single electrochemical oxidation such as electrodes polarization and passivation. Novel Ti/Ta2O5-SnO2 electrodes were developed and found to be electrocatalytically active towards water (with 5% Ta content, 10 oxide film layers) and organic compounds oxidation (with 7.5% Ta content, 8 oxide film layers) and therefore these electrodes can be applicable in both environmental and energy fields. The synergetic effect of combined electrolysis and sonication was shown while conducting sonoelectrochemical (EO/US) degradation of methylene blue (MB) and formic acid (FA). Complete degradation of MB and FA was achieved after 45 and 120 min of EO/US process respectively in neutral media. Mineralization efficiency of FA over 95% was obtained after 2 h of degradation using high frequency ultrasound (381, 863, 1176 kHz) combined with 9.1 mA/cm2 current density. EO/US degradation of MB provided over 75% mineralization in 8 h. High degradation kinetic rates and mineralization efficiencies of model pollutants obtained in EO/US experiments provide the preconditions for further extrapolation of this treatment method to pilot scale studies with industrial wastewaters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cationic superabsorbent polymer (SAP) was synthesized by carrying out the polymerization of 2-(methacryloyloxy)ethyl] trimethyl ammonium chloride) with N,N'-methylenebisacrylamide as the cross-linking agent. The SAP was subjected to degradation in dry and the equilibrium swollen state by thermo gravimetric analysis and exposure to ultraviolet radiation, respectively. The photodegradation was monitored by measuring changes in the swelling capacity and the dry weight of the SAP. The thermal degradation of the SAP occurred in three stages after the initial removal of moisture and the activation energies of the decomposition were determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A composite electrode made up of exfoliated graphite (EG) and diamond was prepared for the electrochemical oxidation of trichloroethylene (TCE). The SEM images of the EG-diamond material showed that diamond powders were dispersed on the surface of EG materials. The N-2 adsorption-desorption isotherm of EG-diamond material resulted in a poor adsorption capability due to the insertion of diamond powders into the porous matrix of EG. Raman spectroscopy revealed the presence of characteristic sp(3) bands of diamond confirming good interaction of diamond with EG. Electrochemical characterisation of EG-diamond in 0.1 M Na2SO4 resulted in an enhanced working potential window. The EG-diamond electrode was employed for the electrochemical oxidation of trichloroethylene (0.2 mM) in a Na2SO4 supporting electrolyte. The EG-diamond, in comparison to the pristine EG electrode, exhibited a higher removal efficiency of 94% (EG was 57%) and faster degradation kinetics of 25.3 x 10(-3) min(-1) showing pseudo first order kinetic behaviour. Under the optimised conditions, 73% total organic content (TOC) removal was achieved after 4 h of electrolysis. The degradation of TCE was also monitored with gas chromatography-mass spectrometry. Dichloroacetic acid (DCAA) was identified as a major intermediate product during the electrochemical oxidation of TCE. The electrochemical degradation of TCE at the EG-diamond electrode represents a cost effective method due to the ease of preparation of EG-diamond composite material without the necessity of diamond activation which is normally achieved through doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) uniformly decorated with nano-anatase TiO2 particles corresponding to different TiO2-CNT weight ratios (up to 90 % TiO2:10 % CNT) were prepared by employing sol-gel process. The nanocomposites were characterized by X-ray diffraction, IR, Raman, Scanning electron microscopy, Transmission electron microscopy, Photoluminescence, BET surface area and diffuse reflectance measurements. The composites show visible light assisted photocatalytic property, for example, the 90 % TiO2-10 % CNT composite completely degrades Indigo Carmine dye within 1 h of exposure to visible light. Similarly, Orange G and Congo Red dyes were decomposed within 2 h under visible light irradiation. The excellent visible light photocatalytic property of the composite is attributed to the synergetic effect of photoexcitation and photosensitization. This is due to the special nanoarchitecture wherein TiO2 nanoparticles are anchored to CNT surface that provides high specific interfacial area for photon absorption and electron trapping. Visible light assisted degradation profile of Indigo Carmine in the presence of TiO2-CNT nanocomposite and TEM image of the TiO2-CNT nanocomposite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon nanoparticles between 2.5 nm and 30 nm in diameter were functionalized by means of photoassisted hydrosilylation reactions in the aerosol phase with terminal alkenes of varying chain length. Using infrared spectroscopy and nuclear magnetic resonance, the chemical composition of the alkyl layer was determined for each combination of particle size and alkyl chain length. The spectroscopic techniques were used to determine that smaller particles functionalized with short chains in the aerosol phase tend to attach to the interior (β) alkenyl carbon atom, whereas particles >10 nm in diameter exhibit attachment primarily with the exterior (α) alkenyl carbon atom, regardless of chain length. © 2011 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cu(OH)(2) nanowires have been synthesized by anodic oxidation of copper through a simple electrolysis process employing ionic liquid as an electrolyte. Controlling the electrochemical conditions can qualitatively modulate the lengths, amounts, and shapes of Cu(OH)(2) nanostructures. A rational mechanism based on coordination self-assembly and oriented attachment is proposed for the selective formation of the polycrystalline Cu(OH)(2) nanowires. In addition, the FeOOH nanoribbons, Ni(OH)(2) nanosheets, and ZnO nanospheres were also synthesized by this route, indicative of the universality of the electrochemical route presented herein. The morphologies and structures of the synthesized nanostructures have been characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD). Fourier transform infrared spectra (FT-IR), and thermogravimetric (TG). (C) 2007 Elsevier Masson SAS. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphite, inexpensive and available in large quantities, unfortunately does not readily exfoliate to yield individual graphene sheets. Here a mild, one-step electrochemical approach for the preparation of ionic-liquid-functionalized graphite sheets with the assistance of an ionic liquid and water is presented. These ionic-liquid-treated graphite sheets can be exfoliated into functionalized graphene nanosheets that can not only be individuated and homogeneously distributed into polar aprotic solvents, but also need not be further deoxidized. Different types of ionic liquids and different ratios of the ionic liquid to water can influence the properties of the graphene nanosheets. Graphene nanosheet/polystyrene composites synthesized by a liquid-phase blend route exhibit a percolation threshold of 0.1 vol % for room temperature electrical conductivity, and, at only 4.19 vol %, this composite has a conductivity of 13.84 S m(-1), which is 3-15 times that of polystyrene composites filled with single-walled carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)