927 resultados para Photic Stimulation
Resumo:
Nineteen-channel EEGs were recorded from the scalp surface of 30 healthy subjects (16 males and 14 females, mean age: 34 years, SD: 11.7 years) at rest and under trains of intermittent photic stimulation (IPS) at rates of 5, 10 and 20 Hz. Digitalized data were submitted to spectral analysis with fast fourier transformation providing the basis for the computation of global field power (GFP). For quantification, GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data obtained under IPS. All subjects showed a photic driving effect at each rate of stimulation. GFP data were normally distributed, whereas ratios from photic driving effect data showed no uniform behavior due to high interindividual variability. Suppression of alpha-power after IPS with 10 Hz was observed in about 70% of the volunteers. In contrast, ratios of alpha-power were unequivocal in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP with 20-Hz IPS by alpha-GFP at rest (R = alpha-GFP IPS/alpha-GFPrest) thus resulted in ratios lower than 1. We conclude that ratios from GFP data with 20-Hz IPS may provide a suitable paradigm for further investigations.
Resumo:
Intermittent photic stimulation (IPS) is a common procedure performed in the electroencephalography (EEG) laboratory in children and adults to detect abnormal epileptogenic sensitivity to flickering light (i.e., photosensitivity). In practice, substantial variability in outcome is anecdotally found due to the many different methods used per laboratory and country. We believe that standardization of procedure, based on scientific and clinical data, should permit reproducible identification and quantification of photosensitivity. We hope that the use of our new algorithm will help in standardizing the IPS procedure, which in turn may more clearly identify and assist monitoring of patients with epilepsy and photosensitivity. Our algorithm goes far beyond that published in 1999 (Epilepsia, 1999a, 40, 75; Neurophysiol Clin, 1999b, 29, 318): it has substantially increased content, detailing technical and logistical aspects of IPS testing and the rationale for many of the steps in the IPS procedure. Furthermore, our latest algorithm incorporates the consensus of repeated scientific meetings of European experts in this field over a period of 6 years with feedback from general neurologists and epileptologists to improve its validity and utility. Accordingly, our European group has provided herein updated algorithms for two different levels of methodology: (1) requirements for defining photosensitivity in patients and in family members of known photosensitive patients and (2) requirements for tailored studies in patients with a clear history of visually induced seizures or complaints, and in those already known to be photosensitive.
Resumo:
Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance.
Resumo:
In order to identify latent bioelectrical oscillators, 15 normal subjects (aged 9-17 years, 8 males, 7 females) were subjected to intermittent photic stimulation. The EEG amplitude spectra corresponding to the 11 fixed frequencies of stimulation presented (3-24 Hz) were combined to form "profiles" of the driving reaction in the right occipital area. The driving response varied with frequency, and was demonstrable in 70-100% of cases (using as criterion peak amplitudes 20% larger than those of the neighbors). The strongest responses were observed at the frequency closest to the alpha peak of the resting EEG. A secondary profile maximum was in the theta band. In 10 subjects, this maximum exceeded half the alpha peak (with an average of 72.4% of the alpha peak), while in the resting spectra, theta amplitudes were much lower than the alpha maxima. This responsiveness in theta activity seems to be characteristic of prepubertal and pubertal subjects. The profiles and resting EEG spectra showed a highly significant Pearson's correlation, with the peak in the theta band of the profiles being the main difference observed between them. The correlation coefficient was significantly correlated with the ratio of the maxima in the theta and alpha bands (R = -0.77, P<0.001). The correlation coefficient between profile and resting spectrum may be a useful indicator in screening methods used to reveal latent cerebral oscillators. Profiles for the second and third harmonics were correlated with those of the first harmonic (fundamental frequency), when considering the corresponding EEG frequencies. Peak frequencies in all three profiles were close to those of the individual's background alpha rhythm, and peak amplitudes in higher harmonics were not much lower than those of the fundamental frequency (mean values of 84 and 63%, for second and third harmonics, respectively).
Resumo:
The electroencephalogram amplitude spectra at 11 fixed frequencies of intermittent photic stimulation of 3 to 24 Hz were combined into driving "profiles" for 14 scalp points in 8 male and 7 female normal subjects aged 9 to 17 years. The driving response varied over frequency and was detected in 70 to 100% of cases in the occipital areas (maximum) and in 27 to 77% of cases in the frontal areas (minimum) using as a criterion peak amplitude 20% higher than those of the neighbors. Each subject responded, on average, to 9.7 ± 1.15 intermittent photic stimulation frequencies in the right occipital area and to 6.8 ± 1.97 frequencies in the right frontal area. Most of the driving responses (in relation to the previous background) were significant according to the spectral F-test (a = 0.05), which also detected changes in some cases of low amplitude responses not revealed by the peak criterion. The profiles had two maxima in the alpha and theta bands in all leads. The latter was not present in the background spectra in the posterior areas and was less pronounced in the anterior ones. The weight of the profile theta maximum increased towards the frontal areas where the two maxima were similar, while the profile amplitudes decreased. The profiles repeated the shape of the background spectra, except for the theta band. The interhemispheric correlation between profiles was high. The theta driving detected in all areas recorded suggests a generalized influence of the theta generators in prepubertal and pubertal subjects.
Resumo:
OBJETIVO: Desenvolver um método e um dispositivo para quantificar a visão em candela (cd). Os estudos de medida da visão são importantes para todas as ciências visuais. MÉTODOS: É um estudo teórico e experimental. Foram descritos os detalhes do método psicofísico e da calibração do dispositivo. Foram realizados testes preliminares em voluntários. RESULTADOS: É um teste psicofísico simples e com resultado expresso em unidades do sistema internacional de medidas. Com a descrição técnica será possível reproduzir o experimento em outros centros de pesquisa. CONCLUSÃO: Os resultados aferidos em intensidade luminosa (cd) são uma opção para estudo visual. Esses resultados possibilitarão extrapolar medidas para modelos matemáticos e para simular efeitos individuais com dados aberrométricos.
Resumo:
With the present study we aimed to analyze the relationship between infants' behavior and their visual evoked-potential (VEPs) response. Specifically, we want to verify differences regarding the VEP response in sleeping and awake infants and if an association between VEP components, in both groups, with neurobehavioral outcome could be identified. To do so, thirty-two full-term and healthy infants, approximately 1-month of age, were assessed through a VEP unpatterned flashlight stimuli paradigm, offered in two different intensities, and were assessed using a neurobehavioral scale. However, only 18 infants have both assessments, and therefore, these is the total included in both analysis. Infants displayed a mature neurobehavioral outcome, expected for their age. We observed that P2 and N3 components were present in both sleeping and awake infants. Differences between intensities were found regarding the P2 amplitude, but only in awake infants. Regression analysis showed that N3 amplitude predicted an adequate social interactive and internal regulatory behavior in infants who were awake during the stimuli presentation. Taking into account that social orientation and regulatory behaviors are fundamental keys for social-like behavior in 1-month-old infants, this study provides an important approach for assessing physiological biomarkers (VEPs) and its relation with social behavior, very early in postnatal development. Moreover, we evidence the importance of the infant's state when studying differences regarding visual threshold processing and its association with behavioral outcome.
Resumo:
The dorsolateral prefrontal cortex (DLPFC) is involved in the cognitive appraisal and modulation of the pain experience. In this sham-controlled study, with healthy volunteers, we used bi-hemispheric transcranial direct current stimulation (tDCS) over the DLPFC to assess emotional reactions elicited by pain observation. Left-cathodal/right-anodal tDCS decreased valence and arousal evaluations compared to other tDCS conditions. Compared to sham condition, both left-cathodal/right-anodal and left-anodal/right-cathodal tDCS decreased hostility, sadness and self-pain perception. These decreased sensations after both active tDCS suggest a common role for left and right DLPFC in personal distress modulation. However, the differences in arousal and valence evaluations point to distinct roles of lateralized DLPFC in cognitive empathy, probably through distinct emotion regulation mechanisms.
Resumo:
Empirical evidence supports the hypothesis that emotional states might contribute to cardiovascular disease and health through multiple pathways. To the extent that the acute cardiovascular response to emotional events plays a role in cardiovascular health and disease, an essential step in order to understand this possible link is to define the hemodynamic response to affective challenges. This was the aim of the present study. We assessed blood pressure (BP), heart rate (HR), stroke volume (SV), cardiac output, and total peripheral resistance (TPR) in response to 13 picture series in 18 men and 19 women (mean age 26) in order to investigate their hemodynamic responses associated with activation of the appetitive and defensive motivational systems underlying emotional experience. The hemodynamic parameters were recorded by finger-cuff photoplethysmography with Finometer™ (FMS Finapres Medical Systems, Amsterdam) and electrocardiography with the Lifeshirt system (VivoMetrics Inc., Ventura, California). Participants rated self-perceived pleasantness and arousal for each series. In men, BP and SV, but not TPR, increased with increasing self-rated arousal both for appetitive and defensive activation, whereas in women these relationships were almost absent, especially, for defensive activation. HR decelerated more in response to negative than positive and neutral pictures, and more so in men than women. These findings indicate striking sex differences. In particular, it is suggested that the sympathetic inotropic effect to the heart increases with increasing self-rated arousal strongly in men but only weakly in women. Regardless of sex differences, the modulation of the cardiovascular response to affective pictures along the dimensions of pleasantness and arousal is primarily myocardial, and the pattern of cardiovascular response is consistent with a configuration of cardiac sympathetic-parasympathetic coactivation. One possible implication of the observed sex differences concerns the link between affective states and cardiovascular health and disease. Men have a higher incidence of cardiovascular diseases than premenopausal women, and exaggerated sympathetic reactivity to emotional events is a potential pathophysiological mechanism. These findings extend current knowledge showing that under several acute behavioral challenges men demonstrate stronger cardiovascular reactivity than women.
Resumo:
BACKGROUND: In patients with outer retinal degeneration, a differential pupil response to long wavelength (red) versus short wavelength (blue) light stimulation has been previously observed. The goal of this study was to quantify differences in the pupillary re-dilation following exposure to red versus blue light in patients with outer retinal disease and compare them with patients with optic neuropathy and with healthy subjects. DESIGN: Prospective comparative cohort study. PARTICIPANTS: Twenty-three patients with outer retinal disease, 13 patients with optic neuropathy and 14 normal subjects. METHODS: Subjects were tested using continuous red and blue light stimulation at three intensities (1, 10 and 100 cd/m2) for 13 s per intensity. Pupillary re-dilation dynamics following the brightest intensity was analysed and compared between the three groups. MAIN OUTCOME MEASURES: The parameters of pupil re-dilation used in this study were: time to recover 90% of baseline size; mean pupil size at early and late phases of re-dilation; and differential re-dilation time for blue versus red light. RESULTS: Patients with outer retinal disease showed a pupil that tended to stay smaller after light termination and thus had a longer time to recovery. The differential re-dilation time was significantly greater in patients with outer retinal disease (median = 28.0 s, P < 0.0001) compared with controls and patients with optic neuropathy. CONCLUSIONS: A differential response of pupil re-dilation following red versus blue light stimulation is present in patients with outer retinal disease but is not found in normal eyes or among patients with visual loss from optic neuropathy.
Resumo:
The aim of the present study was to assess the influence of local environmental olfactory cues on place learning in rats. We developed a new experimental design allowing the comparison of the use of local olfactory and visual cues in spatial and discrimination learning. We compared the effect of both types of cues on the discrimination of a single food source in an open-field arena. The goal was either in a fixed or in a variable location, and could be indicated by local olfactory and/or visual cues. The local cues enhanced the discrimination of the goal dish, whether it was in a fixed or in a variable location. However, we did not observe any overshadowing of the spatial information by the local olfactory or visual cue. Rats relied primarily on distant visuospatial information to locate the goal, neglecting local information when it was in conflict with the spatial information.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia.
Resumo:
Past multisensory experiences can influence current unisensory processing and memory performance. Repeated images are better discriminated if initially presented as auditory-visual pairs, rather than only visually. An experience's context thus plays a role in how well repetitions of certain aspects are later recognized. Here, we investigated factors during the initial multisensory experience that are essential for generating improved memory performance. Subjects discriminated repeated versus initial image presentations intermixed within a continuous recognition task. Half of initial presentations were multisensory, and all repetitions were only visual. Experiment 1 examined whether purely episodic multisensory information suffices for enhancing later discrimination performance by pairing visual objects with either tones or vibrations. We could therefore also assess whether effects can be elicited with different sensory pairings. Experiment 2 examined semantic context by manipulating the congruence between auditory and visual object stimuli within blocks of trials. Relative to images only encountered visually, accuracy in discriminating image repetitions was significantly impaired by auditory-visual, yet unaffected by somatosensory-visual multisensory memory traces. By contrast, this accuracy was selectively enhanced for visual stimuli with semantically congruent multisensory pasts and unchanged for those with semantically incongruent multisensory pasts. The collective results reveal opposing effects of purely episodic versus semantic information from auditory-visual multisensory events. Nonetheless, both types of multisensory memory traces are accessible for processing incoming stimuli and indeed result in distinct visual object processing, leading to either impaired or enhanced performance relative to unisensory memory traces. We discuss these results as supporting a model of object-based multisensory interactions.