997 resultados para Phospholipase-d
Resumo:
The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7. Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference. © 2011 Elsevier Inc.
Resumo:
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and has a well-characterized biochemistry; however, its physiological role is completely unknown. Previous investigations into GPI-PLD have focused on the adult animal or on in vitro systems and a putative role in development has been neither proposed nor investigated. We describe the first evidence of GPI-PLD expression during mouse embryonic ossification. GPI-PLD expression was detected predominantly at sites of skeletal development, increasing during the course of gestation. GPI-PLD was observed during both intramembraneous and endochondral ossification and localized predominantly to the extracellular matrix of chondrocytes and to primary trabeculae of the skeleton. In addition, the mouse chondrocyte cell line ATDC5 expressed GPI-PLD after experimental induction of differentiation. These results implicate GPI-PLD in the process of bone formation during mouse embryogenesis.
Resumo:
The mammalian target of rapamycin (mTOR) signaling pathway is aberrantly activated in polycystic kidney disease (PKD). Emerging evidence suggests that phospholipase D (PLD) and its product phosphatidic acid (PA) regulate mTOR activity. In this study, we assessed in vitro the regulatory function of PLD and PA on the mTOR signaling pathway in PKD. We found that the basal level of PLD activity was elevated in PKD cells. Targeting PLD by small molecule inhibitors reduced cell proliferation and blocked mTOR signaling, whereas exogenous PA stimulated mTOR signaling and abolished the inhibitory effect of PLD on PKD cell proliferation. We also show that blocking PLD activity enhanced the sensitivity of PKD cells to rapamycin and that combining PLD inhibitors and rapamycin synergistically inhibited PKD cell proliferation. Furthermore, we demonstrate that targeting mTOR did not induce autophagy, whereas targeting PLD induced autophagosome formation. Taken together, our findings suggest that deregulated mTOR pathway activation is mediated partly by increased PLD signaling in PKD cells. Targeting PLD isoforms with pharmacological inhibitors may represent a new therapeutic strategy in PKD.
Resumo:
Sequence analysis of a heat-stable protein necessary for the activation of ADP ribosylation factor-dependent phospholipase D (PLD) reveals that this protein has a structure highly homologous to the previously known GM2 ganglioside activator whose deficiency results in the AB-variant of GM2 gangliosidosis. The heat-stable activator protein indeed has the capacity to enhance enzymatic conversion of GM2 to GM3 ganglioside that is catalyzed by β-hexosaminidase A. Inversely, GM2 ganglioside activator purified separately from tissues as described earlier [Conzelmann, E. & Sandhoff, K. (1987) Methods Enzymol. 138, 792–815] stimulates ADP ribosylation factor-dependent PLD in a dose-dependent manner. At higher concentrations of ammonium sulfate, the PLD activator protein apparently substitutes for protein kinase C and phosphatidylinositol 4,5-bisphosphate, both of which are known as effective stimulators of the PLD reaction. The mechanism of action of the heat-stable PLD activator protein remains unknown.
Resumo:
Yeast phosphatidylinositol transfer protein (Sec14p) function is essential for production of Golgi-derived secretory vesicles, and this requirement is bypassed by mutations in at least seven genes. Analyses of such ‘bypass Sec14p’ mutants suggest that Sec14p acts to maintain an essential Golgi membrane diacylglycerol (DAG) pool that somehow acts to promote Golgi secretory function. SPO14 encodes the sole yeast phosphatidylinositol-4,5-bisphosphate-activated phospholipase D (PLD). PLD function, while essential for meiosis, is dispensable for vegetative growth. Herein, we report specific physiological circumstances under which an unanticipated requirement for PLD activity in yeast vegetative Golgi secretory function is revealed. This PLD involvement is essential in ‘bypass Sec14p’ mutants where normally Sec14p-dependent Golgi secretory reactions are occurring in a Sec14p-independent manner. PLD catalytic activity is necessary but not sufficient for ‘bypass Sec14p’, and yeast operating under ‘bypass Sec14p’ conditions are ethanol-sensitive. These data suggest that PLD supports ‘bypass Sec14p’ by generating a phosphatidic acid pool that is somehow utilized in supporting yeast Golgi secretory function.
Resumo:
Phospholipid signaling mediated by lipid-derived second messengers or biologically active lipids is still new and is not well established in plants. We recently have found that lysophosphatidylethanolamine (LPE), a naturally occurring lipid, retards senescence of leaves, flowers, and postharvest fruits. Phospholipase D (PLD) has been suggested as a key enzyme in mediating the degradation of membrane phospholipids during the early stages of plant senescence. Here we report that LPE inhibited the activity of partially purified cabbage PLD in a cell-free system in a highly specific manner. Inhibition of PLD by LPE was dose-dependent and increased with the length and unsaturation of the LPE acyl chain whereas individual molecular components of LPE such as ethanolamine and free fatty acid had no effect on PLD activity. Enzyme-kinetic analysis suggested noncompetitive inhibition of PLD by LPE. In comparison, the related lysophospholipids such as lysophosphatidylcholine, lysophosphatidylglycerol, and lysophosphotidylserine had no significant effect on PLD activity whereas PLD was stimulated by lysophosphatidic acid and inhibited by lysophosphatidylinositol. Membrane-associated and soluble PLD, extracted from cabbage and castor bean leaf tissues, also was inhibited by LPE. Consistent with acyl-specific inhibition of PLD by LPE, senescence of cranberry fruits as measured by ethylene production was more effectively inhibited according to the increasing acyl chain length and unsaturation of LPE. There are no known specific inhibitors of PLD in plants and animals. We demonstrate specific inhibitory regulation of PLD by a lysophospholipid.
Resumo:
Phosphatidylcholine (PC) is a major source of lipid-derived second messenger molecules that function as both intracellular and extracellular signals. PC-specific phospholipase D (PLD) and phosphatidic acid phosphohydrolase (PAP) are two pivotal enzymes in this signaling system, and they act in series to generate the biologically active lipids phosphatidic acid (PA) and diglyceride. The identity of the PAP enzyme involved in PLD-mediated signal transduction is unclear. We provide the first evidence for a functional role of a type 2 PAP, PAP2b, in the metabolism of PLD-generated PA. Our data indicate that PAP2b localizes to regions of the cell in which PC hydrolysis by PLD is taking place. Using a newly developed PAP2b-specific antibody, we have characterized the expression, posttranslational modification, and localization of endogenous PAP2b. Glycosylation and localization of PAP2b appear to be cell type and tissue specific. Biochemical fractionation and immunoprecipitation analyses revealed that PAP2b and PLD2 activities are present in caveolin-1–enriched detergent-resistant membrane microdomains. We found that PLD2 and PAP2b act sequentially to generate diglyceride within this specialized membrane compartment. The unique lipid composition of these membranes may provide a selective environment for the regulation and actions of enzymes involved in signaling through PC hydrolysis.
Resumo:
Three phospholipase Ds (PLDs; EC 3.1.4.4) have been cloned from Arabidopsis, and they exhibit two distinct types of activities: polyphosphoinositide-requiring PLDβ and PLDγ, and polyphosphoinositide-independent PLDα. In subcellular fractions of Arabidopsis leaves, PLDα and PLDγ were both present in the plasma membrane, intracellular membranes, mitochondria, and clathrin-coated vesicles, but their relative levels differed in these fractions. In addition, PLDγ was detected in the nuclear fraction. In contrast, PLDβ was not detectable in any of the subcellular fractions. PLDα activity was higher in the metabolically more active organs such as flowers, siliques, and roots than in dry seeds and mature leaves, whereas the polyphosphoinositide-dependent PLD activity was greater in older, senescing leaves than in other organs. PLDβ mRNA accumulated at a lower level than the PLDα and PLDγ transcripts in most organs, and the expression pattern of the PLDβ mRNA also differed from that of PLDα and PLDγ in different organs. Collectively, these data demonstrated that PLDα, PLDβ, and PLDγ have different patterns of subcellular distribution and tissue expression in Arabidopsis. The present study also provides evidence for the presence of an additional PLD that is structurally more closely related to PLDγ than to the other two PLDs.
Resumo:
Two monoclonal antibodies, anti-IL8R1 and anti-IL8R2, raised against both interleukin 8 receptors (IL-8R) of human neutrophils, IL-8R1 and IL-8R2, were used to study individual receptor functions after stimulation with IL-8, GRO alpha, or NAP-2. Efficacy and selectivity of the antibodies were tested in Jurkat cells transfected with cDNA coding for one or the other receptor. The binding of 125 I labeled IL-8 and IL-8-induced changes of the cytosolic free Ca2+ concentration were inhibited by anti-IL8RI in cells expressing IL-8R1 and by anti-IL8R2 in cells expressing IL-8R2. In human neutrophils, release of elastase was observed after stimulation with IL-8 or GRO alpha. The response to IL-8 was inhibited slightly by anti-IL8R1 and more substantially when both monoclonal antibodies were present, while the response to GRO alpha was inhibited by anti-IL8R2 but was not affected by anti-IL8R1. These results indicate that both IL-8 receptors can signal independently for granule enzyme release. Superoxide production, a measure of the respiratory burst, was obtained with increasing concentrations of IL-8 with maximum effects at 25 to 50 nM, but no response was observed upon challenge with GRO alpha or NAP-2 up to 1000 nM. The superoxide production induced by IL-8 was inhibited by anti-IL8R1, but was not affected by anti-IL8R2. Stimulation of neutrophils with IL-8, in contrast to GRO alpha or NAP-2, also elicited phospholipase D activity. The effect of IL-8 was again inhibited by anti-IL-8R1 but not by anti-IL8R2, indicating that this response, like the respiratory burst, was mediated by IL-8R1. Taken together, our results show that IL-8R1 and IL-8R2 are functionally different. Responses, such as cytosolic free Ca2+ changes and the release of granule enzymes, are mediated through both receptors, whereas the respiratory burst and the activation of phospholipase D depend exclusively on stimulation through IL-8R1.
Resumo:
Bovine kidney phospholipase D (PLD) was assayed by measuring the formation of phosphatidylethanol from added radioactive phosphatidylcholine (PtdCho) in the presence of ethanol, guanosine 5'-[gamma-thio]triphosphate, ammonium sulfate, and cytosol factor that contained small GTP-binding regulatory proteins. The PLD enzyme associated with particulate fractions was solubilized by deoxycholate and partially purified by chromatography on a heparin-Sepharose column. This PLD preferentially used PtdCho as substrate. After purification, the enzyme per se showed little or practically no activity but required an additional factor for the enzymatic reaction. This factor was extracted with chloroform/methanol directly from particulate fractions of various tissues, including kidney, liver, and brain, and identified as phosphatidylethanolamine (PtdEtn), although this phospholipid did not serve as a good substrate. Plasmalogen-rich PtdEtn, dioleoyl-PtdEtn, and L-alpha-palmitoyl-beta-linoleoyl-PtdEtn were effective, but dipalmitoyl-PtdEtn was inert. Sphingomyelin was 30% as active as PtdEtn. The results suggest that mammalian PLD reacts nearly selectively with PtdCho in the form of mixed micelles or membranes with other phospholipids, especially PtdEtn.
Resumo:
Phospholipid metabolism plays an important role in cellular regulation by generating second messengers for signal transduction. Many stimuli activate a phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine, producing phosphatidic acid and choline. Here we report that the yeast SP014 gene, which is essential for meiosis [Honigberg, S. M., Conicella, C. & Esposito, R. E. (1992) Genetics 130, 703-716], encodes a phospholipase D. SP014 RNA and protein activity are induced during late meiotic prophase, and the enzyme has properties similar to mammalian phosphatidylinositol 4,5-bisphosphate-regulated phospholipase D. Characterization of an unusual allele of SP014 defines regions of the protein important for enzyme catalysis and regulation. These results implicate phospholipase D signaling in regulating cellular differentiation.
Resumo:
Phospholipase D (PLD) associated with the rat kidney membrane was activated by guanine 5'-[gamma-thio]triphosphate and a cytosol fraction that contained ADP-ribosylation factor. When assayed by measuring the phosphatidyl transfer reaction to ethanol with exogenously added radioactive phosphatidylcholine as substrate, the PLD required a high concentration (1.6 M) of ammonium sulfate to exhibit high enzymatic activity. Other salts examined were far less effective or practically inactive, and this dramatic action of ammonium sulfate is not simply due to such high ionic strength. Addition of ATP but not of nonhydrolyzable ATP analogue adenosine 5'-[beta, gamma-imido]diphosphate further enhanced the PLD activation approximately equal to 2- to 3-fold. This enhancement by ATP needed cytosol, implying a role of protein phosphorylation. A survey of PLD activity in rat tissues revealed that, unlike in previous observations reported thus far, PLD was most abundant in membrane fractions of kidney, spleen, and liver in this order, and the enzymatic activity in brain and lung was low.