7 resultados para Phocid
Herpesviruses including novel gammaherpesviruses are widespread among phocid seal species in Canada.
Resumo:
Little is known about herpesviruses in Canadian pinnipeds. We measured prevalence of antibodies to herpesviruses in the sera from Canadian phocid seals by an indirect enzyme-linked immunosorbent assay. Wild harbor seals (Phoca vitulina) and captive harbor seals were positive for antibodies to Phocid herpesvirus 1 (PhoHV-1) at prevalences of 91% and 100%, respectively. Sera from wild hooded seals (Cystophora cristata), harp seals (Pagophilus groenlandica), and grey seals (Halichoerus grypus) were positive for antibodies to PhoHV-1 antigenically related herpesvirus antigens at 73%, 79%, and 96%, respectively. We isolated new herpesviruses in cell culture from two hunter-harvested ringed seals (Pusa hispida) in poor body condition from Ulukhaktok, Northwest Territories, Canada; one lethargic hooded seal from the St. Lawrence Estuary, Québec, Canada; and one captive, asymptomatic harp seal from the Magdalen Islands, Québec. Partial sequencing of the herpesvirus DNA polymerase gene revealed that all four virus isolates were closely related to PhoHV-2, a member of the Gammaherpesvirinae subfamily, with nucleotide similarity ranging between 92.8% and 95.3%. The new seal herpesviruses were genetically related to other known pinniped herpesviruses, such as PhoHV-1, Otariid herpesvirus 3, Hawaiian monk (Monachus schauinslandi) seal herpesvirus, and Phocid herpesvirus 5 with 47–48%, 55%, 77%, and 70–77% nucleotide similarities, respectively. The harp seal herpesvirus and both ringed seal herpesviruses were almost identical to each other, whereas the hooded seal herpesvirus was genetically different from the three others (92.8% nucleotide similarity), indicating detection of at least two novel seal herpesviruses. These findings are the first isolation, partial genome sequencing, and identification of seal gammaherpesviruses in three species of Canadian phocid seals; two species of which were suspected of exposure to one or more antigenically related herpesviruses based on serologic analyses.
Resumo:
The cytokine hormone leptin is a key signalling molecule in many pathways that control physiological functions. Although leptin demonstrates structural conservation in mammals, there is evidence of positive selection in primates, lagomorphs and chiropterans. We previously reported that the leptin genes of the grey and harbour seals (phocids) have significantly diverged from other mammals. Therefore we further investigated the diversification of leptin in phocids, other marine mammals and terrestrial taxa by sequencing the leptin genes of representative species. Phylogenetic reconstruction revealed that leptin diversification was pronounced within the phocid seals with a high dN/dS ratio of 2.8, indicating positive selection. We found significant evidence of positive selection along the branch leading to the phocids, within the phocid clade, but not over the dataset as a whole. Structural predictions indicate that the individual residues under selection are away from the leptin receptor (LEPR) binding site. Predictions of the surface electrostatic potential indicate that phocid seal leptin is notably different to other mammalian leptins, including the otariids. Cloning the grey seal leptin binding domain of LEPR confirmed that this was structurally conserved. These data, viewed in toto, support a hypothesis that phocid leptin divergence is unlikely to have arisen by random mutation. Based upon these phylogenetic and structural assessments, and considering the comparative physiology and varying life histories among species, we postulate that the unique phocid diving behaviour has produced this selection pressure. The Phocidae includes some of the deepest diving species, yet have the least modified lung structure to cope with pressure and volume changes experienced at depth. Therefore, greater surfactant production is required to facilitate rapid lung re-inflation upon surfacing, while maintaining patent airways. We suggest that this additional surfactant requirement is met by the leptin pulmonary surfactant production pathway which normally appears only to function in the mammalian foetus.
Resumo:
The virus epizootics which occurred in seals in both Europe and Siberia during 1987/1988 were caused by two different morbillivirus, referred to as phocid distemper virus (PDV) 1 and 2, respectively. Molecular and serological studies have shown that the European virus is quite distinct from canine distemper virus (CDV), its closest relative in the morbillivirus group. Analysis of tissues obtained from infected seals from a wide geographical distrubution over Northern Europe showed that the infectious agent (PDV 1) was identical in all cases. Nucleotide sequence analysis of one of the virus genes suggested that this virus has evolved away from CDV over a long time period and is most probably an enzootic virus of marine mammals. In contrast, the virus (PDV 2) which caused the deaths of many Siberian seals was indistinguishable, both serologically and at the molecular level, from CDV and must have originated from a land source.
Resumo:
Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species’ at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82–95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.
Resumo:
Survival of seal pups may be affected by their ability to respond appropriately to stress. Chronic stress can adversely affect secretion of cortisol and thyroid hormones, which contribute to the control of fuel utilisation. Repeated handling could disrupt the endocrine response to stress and/or negatively impact upon mass changes during fasting. Here we investigated the effects of handling regime on cortisol and thyroid hormone levels, and body mass changes, in fasting male and female grey seal pups (Halichoerus grypus). Females had higher thyroid hormone levels than males throughout fasting and showed a reduction in cortisol midway through the fast that was not seen in males. This may reflect sex-specific fuel allocation or development. Neither handling frequency nor cumulative contact time affected plasma cortisol or thyroid hormone levels, the rate of increase in cortisol over the first five minutes of physical contact or the pattern of mass loss during fasting in either sex. The endocrine response to stress and the control of energy balance in grey seal pups appear to be robust to repeated, short periods of handling. Our results suggest that routine handling should have no additional impact on these animals than general disturbance caused by researchers moving around the colony.
Resumo:
Leptin is a multifunctional hormone, produced predominantly in adipocytes. It regulates energy balance through its impact on appetite and fat metabolism, and its concentration indicates the size of body fat reserves. Leptin also plays a vital role in stretch-induced surfactant production during alveolar development in the fetus. The structure, expression pattern, and role of leptin have not previously been explored in marine mammals. Phocid seals undergo cyclical changes in body composition as a result of prolonged fasting and intensive foraging bouts and experience rapid, dramatic, and repeated changes in lung volume during diving. Here, we report the tissue-specific expression pattern of leptin in these animals. This is the first demonstration of leptin expression in the lung tissue of a mature mammal, in addition to its expression in the blubber and bone marrow, in common with other animals. We propose a role for leptin in seal pulmonary surfactant production, in addition to its likely role in long-term energy balance. We identify substitutions in the phocine leptin sequence in regions normally highly conserved between widely distinct vertebrate groups, and, using a purified seal leptin antiserum, we confirm the presence of the leptin protein in gray seal lung and serum fractions. Finally, we report the substantial inadequacies of using heterologous antibodies to measure leptin in unextracted gray seal serum.
Resumo:
This study seeks to understand how the physiological constraints of diving may change on a daily and seasonal basis. Dive data were obtained from southern elephant seals (Mirounga leonina) from South Georgia using satellite relay data loggers. We analysed the longest (95th percentile) dive durations as proxies for physiological dive limits. A strong, significant relationship existed between the duration of these dives and the time of day and week of year in which they were performed. The depth of the deepest dives also showed a significant, but far less consistent, relationship with local time of day and season. Changes in the duration of the longest dives occurred irrespective of their depth. Dives were longest in the morning (04:00-12:00 h) and shortest in the evening (16:00-00:00 h). The size of the fluctuation varied among animals from 4.0 to 20.0 min. The daily pattern in dive depth was phase-shifted in relation to the diurnal rhythm in dive duration. Dives were deeper at midday and shallower around midnight. Greater daily changes in duration occurred in seals feeding in the open ocean than in those foraging on the continental shelf. The seasonal peak in the duration of the longest dives coincided with austral midwinter. The size of the increase in dive duration from autumn/spring to winter ranged from 11.5 to 30.0 min. Changes in depth of the longest dives were not consistently associated with particular times of year. The substantial diurnal and seasonal fluctuations in maximum dive duration may be a result of changes in the physiological capacity to remain submerged, in addition to temporal changes in the ecological constraints on dive behaviour. We speculate about the role of melatonin as a hormonal mediator of diving capability.