744 resultados para Philosophy of mathematics education
Resumo:
Any theory of thinking or teaching or learning rests on an underlying philosophy of knowledge. Mathematics education is situated at the nexus of two fields of inquiry, namely mathematics and education. However, numerous other disciplines interact with these two fields which compound the complexity of developing theories that define mathematics education. We first address the issue of clarifying a philosophy of mathematics education before attempting to answer whether theories of mathematics education are constructible? In doing so we draw on the foundational writings of Lincoln and Guba (1994), in which they clearly posit that any discipline within education, in our case mathematics education, needs to clarify for itself the following questions: (1) What is reality? Or what is the nature of the world around us? (2) How do we go about knowing the world around us? [the methodological question, which presents possibilities to various disciplines to develop methodological paradigms] and, (3) How can we be certain in the “truth” of what we know? [the epistemological question]
Resumo:
Mathematics education in Brazil, if we consider what one may call the scientific phase, is about 30 years old. The papers for this special issue focus mainly on this period. During these years, many trends have emerged in mathematics education to address the complex problems facing Brazilian society. However, most Brazilian mathematics educators feel that the separation of research into trends is a theoretical idealization that does not respond to the dynamics of the problems we face. We raise the conjecture that the complexity of Brazilian society, where pockets of wealth coexist with the most shocking poverty, has contributed to the adoption and generation of different strands in mathematics education, crossing the boundaries between trends. At a more micro level, we also raise the conjecture that Brazilian trends in research are interwoven because of the way that Brazilian mathematics educators have experienced the process of globalization over these 30 years. This tapestry of trends is a predominant characteristic of mathematics education in Brazil. © FIZ Karlsruhe 2009.
Resumo:
This inaugural book in the new series Advances in Mathematics Education is the most up to date, comprehensive and avant garde treatment of Theories of Mathematics Education which use two highly acclaimed ZDM special issues on theories of mathematics education (issue 6/2005 and issue 1/2006), as a point of departure. Historically grounded in the Theories of Mathematics Education (TME group) revived by the book editors at the 29th Annual PME meeting in Melbourne and using the unique style of preface-chapter-commentary, this volume consist of contributions from leading thinkers in mathematics education who have worked on theory building. This book is as much summative and synthetic as well as forward-looking by highlighting theories from psychology, philosophy and social sciences that continue to influence theory building. In addition a significant portion of the book includes newer developments in areas within mathematics education such as complexity theory, neurosciences, modeling, critical theory, feminist theory, social justice theory and networking theories. The 19 parts, 17 prefaces and 23 commentaries synergize the efforts of over 50 contributing authors scattered across the globe that are active in the ongoing work on theory development in mathematics education.
Resumo:
This thesis traces a genealogy of the discourse of mathematics education reform in Ireland at the beginning of the twenty first century at a time when the hegemonic political discourse is that of neoliberalism. It draws on the work of Michel Foucault to identify the network of power relations involved in the development of a single case of curriculum reform – in this case Project Maths. It identifies the construction of an apparatus within the fields of politics, economics and education, the elements of which include institutions like the OECD and the Government, the bureaucracy, expert groups and special interest groups, the media, the school, the State, state assessment and international assessment. Five major themes in educational reform emerge from the analysis: the arrival of neoliberal governance in Ireland; the triumph of human capital theory as the hegemonic educational philosophy here; the dominant role of OECD/PISA and its values in the mathematics education discourse in Ireland; the fetishisation of western scientific knowledge and knowledge as commodity; and the formation of a new kind of subjectivity, namely the subjectivity of the young person as a form of human-capital-to-be. In particular, it provides a critical analysis of the influence of OECD/PISA on the development of mathematics education policy here – especially on Project Maths curriculum, assessment and pedagogy. It unpacks the arguments in favour of curriculum change and lays bare their ideological foundations. This discourse contextualises educational change as occurring within a rapidly changing economic environment where the concept of the State’s economic aspirations and developments in science, technology and communications are reshaping both the focus of business and the demands being put on education. Within this discourse, education is to be repurposed and its consequences measured against the paradigm of the Knowledge Economy – usually characterised as the inevitable or necessary future of a carefully defined present.
Resumo:
One of the key tenets in Wittgenstein’s philosophy of mathematics is that a mathematical proposition gets its meaning from its proof. This seems to have the paradoxical consequence that a mathematical conjecture has no meaning, or at least not the same meaning that it will have once a proof has been found. Hence, it would appear that a conjecture can never be proven true: for what is proven true must ipso facto be a different proposition from what was only conjectured. Moreover, it would appear impossible that the same mathematical proposition be proven in different ways. — I will consider some of Wittgenstein’s remarks on these issues, and attempt to reconstruct his position in a way that makes it appear less paradoxical.
Resumo:
The number of papers on History of Mathematics Education presented at EBRAPEM (Brazilian Meeting of Graduate Students in Mathematics Education) has increased significantly between 2003 and 2008. This article presents a study with the aim of identifying themes, periods in focus, and sources and theoretical and methodological references used by the authors of the papers on History of Mathematics Education published in the proceedings of VII, VIII, IX, X, XI and XII EBRAPEM. The study indicates that the approach of ongoing research in History of Mathematics Education in Brazil has been similar to the approach of research in History of Education in general. However, the institutional separation between these two areas of investigation is noted as a factor rendering communication between both groups of researchers difficult.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 261-282.