873 resultados para Phenomenology of mathematics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper I argue for the view that structuralism offers the best perspective for an acceptable account of the applicability of mathematics in the empirical sciences. Structuralism, as I understand it, is the view that mathematics is not the science of a particular type of objects, but of structural properties of arbitrary domains of entities, regardless of whether they are actually existing, merely presupposed or only intentionally intended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical literacy in Portugal is very unsatisfactory in what concerns international standards. Even more disturbingly, the Azores archipelago ranks as one of the worst regions of Portugal in this respect. We reason that the popularisation of Mathematics through interactive exhibitions and activities can contribute actively to disseminate mathematical knowledge, increase awareness of the importance of Mathematics in today’s world and change its negative perception by the majority of the citizens. Although a significant investment has been undertaken by the local regional government in creating several science centres for the popularisation of Science, there is no centre for the popularisation of Mathematics. We present our first steps towards bringing Mathematics to unconventional settings by means of hands-on activities. We describe in some detail three activities. One activity has to do with applying trigonometry to measure distances in Astronomy, which can also be applied to Earth objects. Another activity concerns the presence of numerical patterns in the Azorean flora. The third activity explores geometrical patterns in the Azorean cultural heritage. It is our understanding that the implementation of these and other easy-to-follow and challenging activities will contribute to the awareness of the importance and beauty of Mathematics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss theoretical and phenomenological aspects of two-Higgs-doublet extensions of the Standard Model. In general, these extensions have scalar mediated flavour changing neutral currents which are strongly constrained by experiment. Various strategies are discussed to control these flavour changing scalar currents and their phenomenological consequences are analysed. In particular, scenarios with natural flavour conservation are investigated, including the so-called type I and type II models as well as lepton-specific and inert models. Type III models are then discussed, where scalar flavour changing neutral currents are present at tree level, but are suppressed by either a specific ansatz for the Yukawa couplings or by the introduction of family symmetries leading to a natural suppression mechanism. We also consider the phenomenology of charged scalars in these models. Next we turn to the role of symmetries in the scalar sector. We discuss the six symmetry-constrained scalar potentials and their extension into the fermion sector. The vacuum structure of the scalar potential is analysed, including a study of the vacuum stability conditions on the potential and the renormalization-group improvement of these conditions is also presented. The stability of the tree level minimum of the scalar potential in connection with electric charge conservation and its behaviour under CP is analysed. The question of CP violation is addressed in detail, including the cases of explicit CP violation and spontaneous CP violation. We present a detailed study of weak basis invariants which are odd under CP. These invariants allow for the possibility of studying the CP properties of any two-Higgs-doublet model in an arbitrary Higgs basis. A careful study of spontaneous CP violation is presented, including an analysis of the conditions which have to be satisfied in order for a vacuum to violate CP. We present minimal models of CP violation where the vacuum phase is sufficient to generate a complex CKM matrix, which is at present a requirement for any realistic model of spontaneous CP violation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article offers a panorama of mathematics training for future teachers at pre-school level in Spain. With this goal in mind, this article is structured infour sections: where we come from, where we are, where we’re going and where we want to go. It offers, in short, a brief analysis that shows the efforts made to ensure there is sufficient academic and scientific rigour in teachers’ studies at pre-school in general and students’ mathematics education in particular. Together with a description of the progress made in recent years, it also raises some questions for all those involved in training future teachers for this educational stage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: In this article we analyze the key concept of Hilbert's axiomatic method, namely that of axiom. We will find two different concepts: the first one from the period of Hilbert's foundation of geometry and the second one at the time of the development of his proof theory. Both conceptions are linked to two different notions of intuition and show how Hilbert's ideas are far from a purely formalist conception of mathematics. The principal thesis of this article is that one of the main problems that Hilbert encountered in his foundational studies consisted in securing a link between formalization and intuition. We will also analyze a related problem, that we will call "Frege's Problem", form the time of the foundation of geometry and investigate the role of the Axiom of Completeness in its solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addresses the question of teacher educators’ conceptions of mathematics teacher education (MTE) in teacher colleges in Tanzania, and their thoughts on how to further develop it. The tension between exponents of content as opposed to pedagogy has continued to cause challenging conceptual differences, which also influences what teacher educators conceive as desirable in the development of this domain. This tension is connected to the dissatisfaction of parents and teachers with the failure of school mathematics. From this point of view, the overall aim was to identify and describe teacher educators’ various conceptions of MTE. Inspired by the debate among teacher educators about what the balance should be between subject matter and pedagogical knowledge, it was important to look at the theoretical faces of MTE. The theoretical background involved the review of what is visible in MTE, what is yet to be known and the challenges within the practice. This task revealed meanings, perspectives in MTE, professional development and assessment. To do this, two questions were asked, to which no clear solutions satisfactorily existed. The questions to guide the investigation were, firstly, what are teacher educators’ conceptions of MTE, and secondly, what are teacher educators’ thoughts on the development of MTE? The two questions led to the choice of phenomenography as the methodological approach. Against the guiding questions, 27 mathematics teacher educators were interviewed in relation to the first question, while 32 responded to an open-ended questionnaire regarding question two. The interview statements as well as the questionnaire responses were coded and analysed (classified). The process of classification generated patterns of qualitatively different ways of seeing MTE. The results indicate that MTE is conceived as a process of learning through investigation, fostering inspiration, an approach to learning with an emphasis on problem solving, and a focus on pedagogical knowledge and skills in the process of teaching and learning. In addition, the teaching and learning of mathematics is seen as subject didactics with a focus on subject matter and as an organized integration of subject matter, pedagogical knowledge and some school practice; and also as academic content knowledge in which assessment is inherent. The respondents also saw the need to build learner-educator relationships. Finally, they emphasized taking advantage of teacher educators’ neighbourhood learning groups, networking and collaboration as sustainable knowledge and skills sharing strategies in professional development. Regarding desirable development, teacher educators’ thoughts emphasised enhancing pedagogical knowledge and subject matter, and to be determined by them as opposed to conventional top-down seminars and workshops. This study has revealed various conceptions and thoughts about MTE based on teacher educators´ diverse history of professional development in mathematics. It has been reasonably substantiated that some teacher educators teach school mathematics in the name of MTE, hardly distinguishing between the role and purpose of the two in developing a mathematics teacher. What teacher educators conceive as MTE and what they do regarding the education of teachers of mathematics revealed variations in terms of seeing the phenomenon of interest. Within limits, desirable thoughts shed light on solutions to phobias, and in the same way low self-esteem and stigmatization call for the building of teacher educator-student teacher relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ontario bansho is an emergent mathematics instructional strategy used by teachers working within communities of practice that has been deemed to have a transformational effect on teachers' professional learning of mathematics. This study sought to answer the following question: How does teachers' implementation of Ontario bansho within their communities of practice inform their professional learning process concerning mathematics-for-teaching? Two other key questions also guided the study: What processes support teachers' professional learning of content-for-teaching? What conditions support teachers' professional learning of content-for-teaching? The study followed an interpretive phenomenological approach to collect data using a purposive sampling of teachers as participants. The researcher conducted interviews and followed an interpretive approach to data analysis to investigate how teachers construct meaning and create interpretations through their social interactions. The study developed a model of professional learning made up of 3 processes, informing with resources, engaging with students, and visualizing and schematizing in which the participants engaged and 2 conditions, ownership and community that supported the 3 processes. The 3 processes occur in ways that are complex, recursive, nonpredictable, and contextual. This model provides a framework for facilitators and leaders to plan for effective, content-relevant professional learning by placing teachers, students, and their learning at the heart of professional learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a study of the implementation and impact of formative assessment strategies on the motivation and self-efficacy of secondary school mathematics students. An explanatory sequential mixed methods design was implemented where quantitative and qualitative data were collected and analyzed sequentially in 2 different phases. The first phase involved quantitative data from student questionnaires and the second phase involved qualitative data from individual student and teacher interviews. The findings of the study suggest that formative assessment is implemented in practice in diverse ways and is a process where the strategies are interconnected. Teachers experience difficulty in incorporating peer and self-assessment and perceive a need for exemplars. Key factors described as influencing implementation include teaching philosophies, interpretation of ministry documents, teachers’ experiences, leadership in administration and department, teacher collaboration, misconceptions of teachers, and student understanding of formative assessment. Findings suggest that overall, formative assessment positively impacts student motivation and self-efficacy, because feedback is provided which offers encouragement and recognition by highlighting the progress that has been made and what steps need to be taken to improve. However, students are impacted differently with some considerations including how students perceive mistakes and if they fear judgement. Additionally, the impact of formative assessment is influenced by the connection between self-efficacy and motivation, namely how well a student is doing is a source of both concepts.