868 resultados para Phenomenology of Large extra dimensions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a search for large extra dimensions in a data sample of approximately 1 fb(-1) of p (p) over bar collisions at root s=1.96 TeV. We investigate Kaluza-Klein graviton production with a photon and missing transverse energy in the final state. At the 95% C.L. we set limits on the fundamental mass scale M(D) from 884 to 778 GeV for two to eight extra dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the potentiality of hadron colliders to search for large extra dimensions via the production of photon pairs. The virtual exchange of Kaluza-Klein gravitons can significantly enhance this process provided the quantum gravity scale (MS) is in the TeV range. We studied in detail the subprocesses qq̄→γγ and gg → γγ taking into account the complete standard model and graviton contributions as well as the unitarity constraints. We show that the Fermilab Tevatron run II will be able to probe MS up to 1.5-1.9 TeV at 2σ level, while the CERN LHC can extend this search to 5.3-6.7 TeV, depending on the number of extra dimensions. ©2000 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search for nonresonant new phenomena, originating from either contact interactions or large extra spatial dimensions, has been carried out using events with two isolated electrons or muons. These events, produced at the LHC in proton-proton collisions at root s = 7 TeV, were recorded by the ATLAS detector. The data sample, collected throughout 2011, corresponds to an integrated luminosity of 4.9 and 5.0 fb(-1) in the e(+)e(-) and mu(+)mu(-) channels, respectively. No significant deviations from the Standard Model expectation are observed. Using a Bayesian approach, 95% confidence level lower limits ranging from 9.0 to 13.9 TeV are placed on the energy scale of llqq contact interactions in the left-left isoscalar model. Lower limits ranging from 2.4 to 3.9 TeV are also set on the string scale in large extra dimension models. After combining these limits with results from a similar search in the diphoton channel, slightly more stringent limits are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at root s = 7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb(-1) are used. Good agreement is observed between the data and the standard model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We solve Einstein equations on the brane to derive the exact form of the brane-world-corrected perturbations in Kerr-Newman singularities, using Randall-Sundrum and Arkani-Hamed-Dimopoulos-Dvali (ADD) models. It is a consequence of such models that Kerr-Newman mini-black holes can be produced in LHC. We use this approach to derive a normalized correction for the Schwarzschild Myers-Perry radius of a static (4+n)-dimensional mini-black hole, using more realistic approaches arising from Kerr-Newman mini-black hole analysis. Besides, we prove that there are four Kerr-Newman black hole horizons in the brane-world scenario we use, although only the outer horizon is relevant in the physical measurable processes. Parton cross sections in LHC and Hawking temperature are also investigated as functions of Planck mass (in the LHC range 1-10 TeV), mini-black hole mass, and the number of large extra dimensions in brane-world large extra-dimensional scenarios. In this case a more realistic brane-effect-corrected formalism can achieve more precisely the effective extra-dimensional Planck mass and the number of large extra dimensions-in the Arkani-Hamed-Dimopoulos-Dvali model-or the size of the warped extra dimension-in Randall-Sundrum formalism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search is conducted for non-resonant new phenomena in dielectron and dimuon final states, originating from either contact interactions or large extra spatial dimensions. The LHC 2012 proton–proton collision dataset recorded by the ATLAS detector is used, corresponding to 20 fb−1 at √ s = 8 TeV. The dilepton invariant mass spectrum is a discriminating variable in both searches, with the contact interaction search additionally utilizing the dilepton forward-backward asymmetry. No significant deviations from the Standard Model expectation are observed. Lower limits are set on the ℓℓqq contact interaction scale ʌ between 15.4 TeVand 26.3 TeV, at the 95%credibility level. For large extra spatial dimensions, lower limits are set on the string scale MS between 3.2 TeV to 5.0 TeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)