1000 resultados para Phase retardation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

根据石英晶体双折射率的色散特性,对石英波片的偏光干涉谱进行了理论分析和数值模拟,提出了一种石英波片延迟量和厚度的偏光干涉标定法。即由偏光干涉谱,可以得出石英波片在200~2000 nm宽光谱范围内的延迟量;通过对长波段的偏光干涉谱极值波长的精确判断,可以准确地计算出该石英波片的厚度。利用Lambda 900 紫外可见近红外分光光度计对一片石英波片的偏光干涉谱进行了测量。在波长精度为0.1 nm的情况下,测量的厚度精度为0.1 μm。误差分析结果表明,通过提高光谱的最小分辨力及选择较长的光谱波段进行测量计算

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出了一种基于光弹调制技术的波片相位延迟量测量方法,利用米勒矩阵对其进行了理论推导和误差分析。测量光路包括激光器、起偏器、光弹调制器、被测波片、检偏器和光电探测器,利用探测信号的归一化基频分量和二次谐波分量精确计算出被测波片的相位延迟量。该方法能测量紫外到红外光谱范围内任意相位延迟量的波片,误差分析表明其误差小于0.05°。实验验证了该测量方法的有效性,波片相位延迟量的重复测量精度为0.0048°.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出一种精确测量波片相位延迟的方法。将待测波片置于起偏器和检偏器之间,转动待测波片和检偏器至不同的位置并探测输出的光强,得到波片的相位延迟。采用光源调制技术和解调技术,抑制了连续光所无法克服的背景光干扰和电子噪声的干扰;将光路分为测量光路和参考光路,采用软件除法技术,消除了光源波动的影响,从而实现波片相位延迟的精确测量。详细分析了影响测量精度的误差因素,主要有光源波长变化、温度变化、入射角倾斜、转台转角误差和光源波动,计算了1064 nm波长时厚度为0.52 mm的λ/4多级结晶石英波片产生的相位延迟误差

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在起偏器待测波片检偏器系统基础上提出一种四区域测量波片相位延迟量的方法。调整待测波片和检偏器的方位角,获得相应的四组光强值,通过线性运算得到待测波片的相位延迟量,完全消除了起偏器和检偏器不完全消光带来的误差。由于测量系统中不存在标准波片或其他相位调制元件,允许测量波长仅受偏振棱镜和探测器的限制,因此四区域法可适用于很大波长范围内的波片测量。以λ/4波片为例,理论分析了测量系统利用四区域测量法后的仪器误差为σ≤±3.49065×10-3rad(约0.2°),精度比原算法提高约1个数量级。实验验证了四区域法能有效提高系统精度。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The focusing properties of a concentric piecewise cylindrical vector beam is investigated theoretically in this paper. The beam consists of three portions with different and changeable phase retardation and polarization. Numerical simulations show that the evolution of the focal shape is very considerable by changing the radius and polarization rotation angle of each portion of the vector beam. And some interesting focal spots may occur, such as two- or three-peak focus, dark hollow focus, ring focus, and two-ring-peak focus. Corresponding gradient force patterns are also computed, and novel trap patterns, including cup shell shape trap with one trap at its each side along axis, rectangle shell shape trap with one trap at its each side, dumbbell optical trap, spherical shell optical trap, may occur, which shows that the concentric piecewise cylindrical vector beam can be used to construct controllable optical tweezers. (c) 2006 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid crystal variable phase retarders have been incorporated into prototype devices for optical communications system applications, both as endless polarization controllers 1,2,3, and as holographic beam steerers 4. Nematic liquid crystals allow continuous control of the degree of retardation induced at relatively slow switching speeds, while ferroelectric liquid crystal based devices allow fast (sub millisecond) switching, but only between two bistable states. The flexoelectro-optic effect 5,6 in short-pitch chiral nematic liquid crystals allows both fast switching of the optic axis and continuous, electric field dependent control of the degree of rotation of the optic axis. A novel geometry for the flexoelectro-optic effect is presented here, in which the helical axis of the chiral nematic is perpendicular to the cell walls (grandjean texture) and the electric field is applied in the plane of the cell. This facilitates deflection of the optic axis of the uniaxial negatively birefringent material from lying along the direction of propagation to having some component in the polarization plane of the light. The device is therefore optically neutral at zero field for telecommunications wavelengths (1550nm), and allows a continuously variable degree of phase excursion to be induced, up to 2π/3 radians achieved so far in a 40μm thick cell. The retardation has been shown both to appear, on application of the field, and disappear on removal, at speeds of 100-500 μs. The direction of deflection of the optic axis is also dependent on the direction of the field, allowing the possibility, in a converging electrode "cartwheel cell", of endless rotation of the liquid crystal waveplate at a higher rate than achievable through dielectric coupling to plain nematic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-dimensional propagation of a combustion wave through a premixed solid fuel for two-stage kinetics is studied. We re-examine the analysis of a single reaction travelling-wave and extend it to the case of two-stage reactions. We derive an expression for the travelling wave speed in the limit of large activation energy for both reactions. The analysis shows that when both reactions are exothermic, the wave structure is similar to the single reaction case. However, when the second reaction is endothermic, the wave structure can be significantly different from single reaction case. In particular, as might be expected, a travelling wave does not necessarily exist in this case. We establish conditions in the limiting large activation energy limit for the non-existence, and for monotonicity of the temperature profile in the travelling wave.