4 resultados para Phaffia rhodozyma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: There is an increasing interest in obtaining natural products with bioactive properties, using fermentation technology. However, the downstream processing consisting of multiple steps can be complicated, leading to increase in the final cost of the product. Therefore there is a need for integrated, cost-effective and scalable separation processes. RESULTS: The present study investigates the use of colloidal gas aphrons (CGA), which are surfactant-stabilized microbubbles, as a novel method for downstream processing. More particularly, their application for the recovery of astaxanthin from the cells of Phaffia rhodozyma is explored. Research carried out with standard solutions of astaxanthin and CGA generated from the cationic surfactant hexadecyl. trimethyl ammonium bromide (CTAB) showed that up to 90% recovery can be achieved under optimum conditions, i.e., pH 11 with NaOH 0.2 mol L-1. In the case of the cells' suspension from the fermentation broth, three different approaches were investigated: (a) the conventional integrated approach where CGA were applied directly; (b) CGA were applied to the clarified suspension of cells; and finally (c) the in situ approach, where CGA are generated within the clarified suspension of cells. Interestingly, in the case of the whole suspension (approach a) highest recoveries (78%) were achieved under the same conditions found to be optimal for the standard solutions. In addition, up to 97% recovery of total carotenoids could be achieved from the clarified suspension after pretreatment with NaOH. This pretreatment led to maximum cell disruption as well as optimum conditioning for subsequent CGA separation. CONCLUSIONS: These results demonstrate the potential of CGA for the recovery of bioactive components from complex feedstock. (c) 2008 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to investigate the separation of astaxanthin from the cells of Phaffia rhodozyma using colloidal gas aphrons (CGA), which are surfactant stabilized microbubbles, in a flotation column. It was reported in previous studies that optimum recoveries are achieved at conditions that favor electrostatic interactions. Therefore, in this study, CGA generated from the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) were applied to suspensions of cells pretreated with NaOH. The different operation modes (batch or continuous) and the effect of volumetric ratio of CGA to feed, initial concentration of feed, operating height, and flow rate of CGA on the separation of astaxanthin were investigated. The volumetric ratio was found to have a significant effect on the separation of astaxanthin for both batch and continuous experiments. Additionally, the effect of homogenization of the cells on the purity of the recovered fractions was investigated, showing that the homogenization resulted in increased purity. Moreover, different concentrations of surfactant were used for the generation of CGA for the recovery of astaxanthin on batch mode; it was found that recoveries up to 98% could be achieved using CGA generated from a CTAB solution 0.8 mM, which is below the CTAB critical micellar concentration (CMC). These results offer important information for the scale-up of the separation of astaxanthin from the cells of P. rhodozyma using CGA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aimed at evaluating the total carotenoids production by a newly isolated Sporidiobolus pararoseus. Bioproduction was carried out in an orbital shaker, using 10% (w/v) of inoculum (25 A degrees C, 180 rpm for 35 h), incubated for 120 h in a dark room. Liquid N(2) and dimethylsulphoxide (DMSO) were used for cell rupture, and carotenoids were extracted with a solution of acetone/methanol (7:3, v/v). Optimization of carotenoids bioproduction was achieved by experimental design technique. Initially, a Plackett-Burman design was used for the screening of the most important factors, after the statistical analysis, a complete second-order design was carried out to optimize the concentration of total carotenoids in a conventional medium. Maximum concentration of 856 mu g/L of total carotenoids was obtained in a medium containing 60 g/L of glucose, 15 g/L of peptone, and 15 g/L of malt extract, 25 A degrees C, initial pH 4.0 and 180 rpm. Fermentation kinetics showed that the maximum concentration of total carotenoids was reached after 102 h of fermentation and that carotenoids bioproduction was associated with cell growth.