64 resultados para Phaeophyceae
Resumo:
The characteristics of inorganic carbon assimilation by photosynthesis were investigated in male and female gametophytes and juvenile sporophytes of Undaria pinnatifida. Gametophytes and sporophytes have detectable extracellular and intracellular carbonic anhydrase (CA) activity, and the CA inhibitor, acetazolamide (AZ), significantly inhibited their photosynthesis O-2 evolution. In pH-drift experiments, it was found that gametophytes did not raise the final pH of seawater above 9.00 (CO2 concentrations of about 2.2 mu M), indicating a low ability to utilize inorganic carbon. In contrast, sporophytes rapidly raised pH to over 9.53 and depleted the free CO2 Concentration to less than 0.16 mu M. The apparent photosynthetic affinity for CO2 was almost the same for gametophytes and sporophytes, whereas gametophytes had a much lower affinity for HCO3- than sporophytes. Two inhibitors of band 3 anion exchange protein (DIDS and SITS) inhibited the photosynthesis of gametophytes but not that of sporophytes. It was indicated that both gametophytes and sporophytes were capable of using HCO3-, which involved the external CA activity, and a direct HCO3- use also occurred in the former, but the latter showed a greater capacity of HCO3- use than the former. In addition, male and female gametophytes did not show great differences in the inorganic carbon uptake mechanism underlying photosynthesis.
Resumo:
The seaweed Laminaria japonica (Phaeophyceae) has a two-generation life cycle consisting of haploid gametophytes and diploid sporophytes. Female and/or male gametophytes were transformed using particle bombardment and the histological LacZ assay was performed on sporophytes generated by either parthenogenesis or inbreeding. Female gametophyte-targeted transformation resulted in similar lower efficiencies in both parthenogenetic and zygotic sporophytes, and only a chimeric expression pattern was observed. Male gametophyte-targeted transformation led to a higher efficiency, with 3.5% of the zygotic sporophytes stained completely blue (all-blue), implying the integration of lacZ at the one-cell stage. Polymerase chain reaction analysis using primers specific for a lacZ-vector juncture fragment and subsequent blotting indicated the presence of the introduced gene in the sporophytes. The method reported here has a potential for seaweed transformation using spore-based bombardment followed by the developmental process.
Resumo:
Inter-simple sequence repeat (ISSR) analysis was used to assess eleven pairs of Undaria pinnatifida (Harv.) Suringar male and female gametophytes. After screening fifty primers, 18 ISSR primers were selected for final analysis. A total of 104 loci were obtained, of which 77 were polymorphic, among the gametophytes studied. Genetic relationships were analyzed with simple matching (S), Jaccard's (J) and Dice's (D) distance coefficients. Little genetic variations were found among the selected Undaria gametophytes, for instance, the genetic distances ranging from 0.010 to 0.125 with Dice coefficients. UPGMA dendrograms showed that 11 pairs of Undaria gametophytes were distributed into five groups. Most Undaria strains cultivated in China exhibited closely genetic relationships with the strains from Japan. However, gametophytes from Qingdao appeared as distinct clades from other Undaria strains with all three distance coefficients used. Mantel test showed that the three distance measurements generated congruent clustering patterns on the same data. Our results demonstrated the feasibility of applying ISSR markers for genetic analysis of Undaria gametophytes. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Eleven pairs of Undaria pinnatifida (Harv.) Suringar gametophytes were identified with random amplified polymorphic DNA (RAPD) technique. After screening 100 primers, 20 ten-base primers were determined for the RAPD analysis. A total of 312 polymorphic loci were obtained, of which 97.7% were polymorphic. The primer S198 was found to distinguish all the selected Undaria pinnatifida gametophytes. The genetic distances between each two of the twenty-two U. pinnatifida gametophytes ranged from 0.080 to 0.428, while the distances to the Laminaria was 0.497 on average. After reexamination, two sequences characterized amplification region (SCAR) markers were successfully converted, which could be applied to U. pinnatifida germplasm identification. All these results demonstrated the feasibility of applying RAPD markers to germplasm characterization and identification of U. pinnatifida gametophytes, and to provide a molecular basis for Undaria breeding.
Resumo:
Molecular markers were used to identify and assess cultivars of Laminaria Lamx. and to delineate their phylogenetic relationships. Random amplified polymorphic DNA (RAPD) analysis was used for detection. After screening, 11 primers were selected and they yielded 133 bands in all, of which approximately 99.2% were polymorphic. The genetic distances between gametophytes ranged from 0.412 to 0.956. Two clusters were formed with the unweighted pair group method with arithmetic mean (UPGMA) dendrogram based on the simple matching coefficient. All cultivars of Laminaria japonica Aresch. used for breeding in China fell into one cluster. L. japonica from Japan, L. saccharina (L.) Lam., and L. angustata Kjellm. formed the other cluster and showed higher genetic variation than L. japonica from China. Nuclear ribosomal DNA (rDNA) sequences, including internal transcribed spacers (ITS1 and ITS2) were studied and aligned. The nucleotides of the sequences ranged from 634 to 668, with a total of 692 positions including TTS1, ITS2, and the 5.8S coding region. The phylogenetic tree obtained by the neighbor-joining method favored, to some extent, the results revealed by RAPD analysis. The present study indicates that RAPD and ITS analyses could be used to identify and assess Laminaria germplasm and to distinguish some species and, even intraspecies, in Laminaria.
Resumo:
We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alterornonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1) The blades of L. japonica exhibited symptoms of lesion, bleaching and deterioration when infected by the bacterium, and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L. japonica.
Resumo:
The overall biotic pressure on a newly introduced species may be less than that experienced within its native range, facilitating invasion. The brown alga Sargassum muticum (Yendo) Fensholt is a conspicuous and successful invasive species originally from Japan and China. We compared S. muticum and native macroalgae with respect to the biotic pressures of mesoherbivore grazing and ectocarpoid fouling. In Strangford Lough, Northern Ireland, S. muticum thalli were as heavily overgrown with seasonal blooms of epiphytic algae as native macroalgal species were. The herbivorous amphipod Dexamine spinosa was much more abundant on S. muticum than on any native macroalga. When cultured with this amphipod, S. muticum lost more tissue than three native macroalgae, Saccharina latissima (Linnaeus) Lane et al., Halidrys siliquosa (Linnaeus) Lyngbye and Fucus serratus Linnaeus. Sargassum muticum cultured with both ectocarpoid fouling and amphipods showed a severe impact, consistent with our previous findings of large declines in the density of S. muticum observed in the field during the peak of fouling. Despite being a recent introduction into the macroalgal community in Strangford Lough, S. muticum appears to be under biotic pressure at least equal to that on native species, suggesting that release from grazing and epiphytism does not contribute to the invasiveness of this species in Strangford Lough.
Resumo:
The influence of oscillatory versus unidirectional flow on the growth and nitrate-uptake rates of juvenile kelp, Laminaria digitata, was determined seasonally in experimental treatments that simulated as closely as possible natural environmental conditions. In winter, regardless of flow condition (oscillatory and unidirectional) or water velocity, no influence of water motion was observed on the growth rate of L. digitata. In summer, when ambient nitrate concentrations were low, increased water motion enhanced macroalgal growth, which is assumed to be related to an increase in the rate of supply of nutrients to the blade surface. Nitrate-uptake rates were significantly influenced by water motion and season. Lowest nitrate-uptake rates were observed for velocities <5 cm · s−1 and nitrate-uptake rates increased by 20%–50% under oscillatory motion compared to unidirectional flow at the same average speed. These data further suggested that the diffusion boundary layer played a significant role in influencing nitrate-uptake rates. However, while increased nitrate-uptake in oscillatory flow was clear, this was not reflected in growth rates and further work is required to understand the disconnection of nitrate-uptake and growth by L. digitata in oscillatory flow. The data obtained support those from related field-based studies, which suggest that in summer, when insufficient nitrogen is available in the water to saturate metabolic demand, the growth rate of kelps will be influenced by water motion restricting mass transfer of nitrogen.
Resumo:
To be able to interpret patterns of biodiversity it is important to understand the processes by which new species evolve and how closely related species remain reproductively isolated and ecologically differentiated. Divergence and differentiation can vary during speciation and it can be seen in different stages. Groups of closely related taxa constitute important case studies to understand species and new biodiversity formation. However, it is important to assess the divergence among them at different organismal levels and from an integrative perspective. For this purpose, this study used the brown seaweeds genus Fucus as a model to study speciation, as they constitute a good opportunity to study divergence at different stages. We investigated the divergence patterns in Fucus species from two marginal areas (northern Baltic Sea and the Tjongspollen area), based on phenetic, phylogenetic and biological taxonomical criteria that are respectively characterised by algal morphology, allele frequencies of five microsatellite loci and levels of secondary polyphenolic compounds called phlorotannins. The results from this study showed divergence at morphological and genetic levels to certain extent but complete lack of divergence at biochemical level (i.e. constitutive phlorotannin production) in the Baltic Sea or Norway. Morphological divergence was clearly evident in Tjongspollen (Norway) among putative taxa as they were identified in the field and this divergence corresponds with their neutral genetic divergence. In the Baltic, there are some distinguishable patterns in the morphology of the swedish and finnish individuals according to locality to certain extent but not among putative taxa within localities. Likewise, these morphological patterns have genetic correspondence among localities but not within each locality. At the biochemical level, measured by the phlorotannin contents there were neither evidence of divergence in Norway or the Baltic Sea nor any discernable aggregation pattern among or within localities. Our study have contributed with further understanding of the Baltic Sea Fucus system and its intriguingly rapid and recent divergence as well as of the Tjongspollen area systems where formally undescribed individuals have been observed for the first time; in fact they appear largely differentiated and they may well warrant a new species status. In current times, climate change threatens, peripheral ecosystems, biodiversity, and increased knowledge of processes generating and maintaining biodiversity in those ecosystems seem particularly important and needed.
Resumo:
Understanding the ecological implications of global climate change requires investigations of not only the direct effects of environmental change on species performance but also indirect effects that arise from altered species interactions. We performed CO2 perturbation experiments to investigate the effects of ocean acidification on the trophic interaction between the brown seaweed Fucus vesiculosus and the herbivorous isopod Idotea baltica. We predicted faster growth of F. vesiculosus at elevated CO2-concentrations and higher carbon content of the algal tissue. We expected that I. baltica has different consumption rates on algae that have been grown at different CO2 levels and that the isopods remove surplus carbon metabolically by enhanced respiration. Surprisingly, growth of F. vesiculosus as well as the C:N-ratio of the algal tissue were reduced at high CO2-levels. The changes in the elemental composition had no effect on the consumption rates and the respiration of the herbivores. An additional experiment showed that consumption of F. vesiculosus by the isopod Idotea emarginata was independent of ocean acidification and temperature. Our results could not reveal any effects of ocean acidification on the per capita strength of the trophic interaction between F. vesiculosus and its consumers. However, reduced growth of the algae at high CO2-concentrations might reduce the capability of the seaweed to compensate losses due to intense herbivory.
Resumo:
Our objective for this study was to evaluate the influence of preindustrial and expected future atmospheric CO2 concentrations (280 µatm and 700 µatm pCO2, respectively) on different life-cycle stages of the kelp Laminaria hyperborea from Helgoland (Germany, North Sea). Zoospore germination, gametogenesis, vegetative growth, sorus formation and photosynthetic performance of vegetative and fertile tissue were examined. The contribution of external carbonic anhydrase (exCA) to C-supply for net-photosynthesis (net-PS) and the Chla- and phlorotannin content were investigated. Female gametogenesis and vegetative growth of sporophytes were significantly enhanced under the expected future pCO2. rETR(max) and net-PS of young vegetative sporophytes tended to increase performance at higher pCO2. The trend towards elevated net-PS vanished after inhibition of exCA. In vegetative sporophytes, phlorotannin content and Chla content were not significantly affected by pCO2.
Resumo:
Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3-) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3- by the surface-bound enzyme carbonic anhydrase (CAext). Here, we examined other putative HCO3- uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3-: CO2 = 940:1) and pHT 7.65 (HCO3-: CO2 = 51:1). Rates of photosynthesis, and internal CA (CAint) and CAext activity were measured following the application of AZ which inhibits CAext, and DIDS which inhibits a different HCO3- uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3- uptake by M. pyrifera is via an AE protein, regardless of the HCO3-: CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%-65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%-100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext, because of its role in dehydrating HCO3- to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3- uptake in M. pyrifera was different than that in other Laminariales studied (CAext-catalyzed reaction) and we suggest that species-specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3-:CO2 due to ocean acidification.