177 resultados para Perylene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conditions for [pd(mnt)(2)]he growth of [pd(mnt)(2)]Perylene) [pd(mnt)(2)] [Pd(mnt) [pd(mnt)(2)]] crystals either by chemical oxidation and electrochemical routes are [pd(mnt)(2)]escribed. The electrocrystallisation is limited by close [pd(mnt)(2)]roximity of [pd(mnt)(2)]he oxidation [pd(mnt)(2)]otentials of [pd(mnt)(2)]he [pd(mnt)(2)]erylene [pd(mnt)(2)]onor and [Pd(mnt) [pd(mnt)(2)]] - anion, and [pd(mnt)(2)]epending on [pd(mnt)(2)]he experimental conditions [pd(mnt)(2)]ifferent [pd(mnt)(2)]orphologies can be obtained. [pd(mnt)(2)]Per) [pd(mnt)(2)] [Pd(mnt) [pd(mnt)(2)]] crystals obtained by elecrocrystallisation were found [pd(mnt)(2)]o be [pd(mnt)(2)]ainly of [pd(mnt)(2)]he β-polymorph with [pd(mnt)(2)]roperties comparable [pd(mnt)(2)]o [pd(mnt)(2)]he Cu, Ni and Pt analogues [pd(mnt)(2)]reviously [pd(mnt)(2)]escribed at variance with [pd(mnt)(2)]hose obtained by chemical oxidation which are [pd(mnt)(2)]ainly of [pd(mnt)(2)]he α-polymorph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thrust towards energy conservation and reduced environmental footprint has fueled intensive research for alternative low cost sources of renewable energy. Organic photovoltaic cells (OPVs), with their low fabrication costs, easy processing and flexibility, represent a possible viable alternative. Perylene diimides (PDIs) are promising electron-acceptor candidates for bulk heterojunction (BHJ) OPVs, as they combine higher absorption and stability with tunable material properties, such as solubility and position of the lowest unoccupied molecular orbital (LUMO) level. A prerequisite for trap free electron transport is for the LUMO to be located at a level deeper than 3.7 eV since electron trapping in organic semiconductors is universal and dominated by a trap level located at 3.6 eV. Although the mostly used fullerene acceptors in polymer:fullerene solar cells feature trap-free electron transport, low optical absorption of fullerene derivatives limits maximum attainable efficiency. In this thesis, we try to get a better understanding of the electronic properties of PDIs, with a focus on charge carrier transport characteristics and the effect of different processing conditions such as annealing temperature and top contact (cathode) material. We report on a commercially available PDI and three PDI derivatives as acceptor materials, and its blends with MEH-PPV (Poly[2-methoxy 5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) and P3HT (Poly(3-hexylthiophene-2,5-diyl)) donor materials in single carrier devices (electron-only and hole-only) and in solar cells. Space-charge limited current measurements and modelling of temperature dependent J-V characteristics confirmed that the electron transport is essentially trap-free in such materials. Different blend ratios of P3HT:PDI-1 (1:1) and (1:3) show increase in the device performance with increasing PDI-1 ratio. Furthermore, thermal annealing of the devices have a significant effect in the solar cells that decreases open-circuit voltage (Voc) and fill factor FF, but increases short-circuit current (Jsc) and overall device performance. Morphological studies show that over-aggregation in traditional donor:PDI blend systems is still a big problem, which hinders charge carrier transport and performance in solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil price rises more and more, and the world energy consumption is projected to expand by 50 percent from 2005 to 2030. Nowadays intensive research is focused on the development of alternative energies. Among them, there are dye-sensitized nanocrystalline solar cells (DSSCs) “the third generation solar cells”. The latter have gained attention during the last decade and are currently subject of intense research in the framework of renewable energies as a low-cost photovoltaic. At present DSSCs with ruthenium based dyes exhibit highest efficiencies (ca 11%). The objective of the present work is to fabricate, characterize and improve the performance of DSSCs based on metal free dyes as sensitizers, especially on perylene derivatives. The work begins by a general introduction to the photovoltaics and dye-sensitized solar cells, such as the operating principles and the characteristics of the DSSCs. Chapter 2 and 3 discuss the state of the art of sensitizers used in DSSCs, present the compounds used as sensitizer in the present work and illustrate practical issues of experimental techniques and device preparation. A comparative study of electrolyte-DSSCs based on P1, P4, P7, P8, P9, and P10 are presented in chapter 4. Experimental results show that the dye structure plays a crucial role in the performance of the devices. The dye based on the spiro-concept (bipolar spiro compound) exhibited a higher efficiency than the non-spiro compounds. The presence of tert-butylpyridine as additive in the electrolyte was found to increase the open circuit voltage and simultaneously decrease the efficiency. The presence of lithium ions in the electrolyte increases both output current and the efficiency. The sensitivity of the dye to cations contained in the electrolyte was investigated in the chapter 5. FT-IR and UV-Vis were used to investigate the in-situ coordination of the cation to the adsorbed dye in the working devices. The open-circuit voltage was found to depend on the number of coordination sites in the dye. P1 with most coordination sites has shown the lowest potential drop, opposite to P7, which is less sensitive to cations in the working cells. A strategy to improve the dye adsorption onto the TiO2 surface, and thus the light harvesting efficiency of the photoanode by UV treatment, is presented in chapter 6. The treatment of the TiO2 film with UV light generates hydroxyl groups and renders the TiO2 surface more and more hydrophilic. The treated TiO2 surface reacts readily with the acid anhydride group of the dye that acts as an anchoring group and improves the dye adsorption. The short-circuit current density and the efficiency of the electrolyte-based dye cells was considerably improved by the UV treatment of the TiO2 film. Solid-state dye-sensitized solar cells (SSDs) based on spiro-MeOTAD (used as hole transport material) are studied in chapter 7. The efficiency of SSDs was globally found to be lower than that of electrolyte-based solar cells. That was due to poor pore filling of the dye-loaded TiO2 film by the spin-coated spiro-MeOTAD and to the significantly slower charge transport in the spiro-MeOTAD compared to the electrolyte redox mediator. However, the presence of the donor moieties in P1 that are structurally similar to spiro-MeOTAD was found to improve the wettability of the P1-loaded TiO2 film. As a consequence the performance of the P1-based solid-state cells is better compared to the cells based on non-spiro compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-component, supramolecular polymer blend has been designed using a novel π-electron rich bisperylene- terminated polyether. This polymer is able to self-assemble through electronically complementary π–π stacking interactions with a π-electron-deficient chain-folding polydiimide to afford thermally healable polymer blends. Model compounds were developed to assess the suitability of the deep green complexes formed between perylene residues and chain-folding bis-diimides for use in polymer blends. The polymer blends thus synthesised were elastomeric in nature and demonstrated healable properties as demonstrated by scanning electron microscopy. Healing was observed to occur rapidly at ca. 75 degC, and excellent healing efficiencies were found by tensometric and rheometric analyses. These tuneable, stimuli-responsive, supramolecular polymer blends are compared to related healable blends featuring pyrene-terminated oligomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (I)FT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the two-photon absorption spectrum of perylene tetracarboxylic derivatives using the white-light continuum Z-scan technique. Perylene derivatives present relatively high two-photon absorption cross-section, which makes them attractive for applications in photonics. Because of the spectral resolution of the white-light continuum Z-scan, we were able to observe a well defined structure in the two-photon absorption spectrum, composed by two distinct peaks. These peaks, as well as the resonant enhancement of the nonlinearity, were modeled using the sum-over-states approach considering a four-level energy diagram with two final two-photon states. The existence of such states was confirmed using the response function formalism within the DFT framework. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a pump-probe study of the two-photon induced reflectivity changes in bis (n-butylimido) perylene thin films. To enhance the two-photon excitation we deposited bis (n-butylimido) perylene films on top of gold nanoislands. The observed transient response in the reflectivity spectrum of bis (n-butylimido) perylene is due to a depletion of the molecule`s ground state and excited state absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the 2PA absorption spectrum of a family of perylene tetracarboxylic derivatives ( PTCDs): bis( benzimidazo) perylene ( AzoPTCD), bis( benzimidazo) thioperylene ( Monothio BZP), n-pentylimidobenzimidazoperylene ( PazoPTCD), and bis( n-butylimido) perylene ( BuPTCD). These compounds present extremely high two-photon absorption, which makes them attractive for applications in photonics devices. The two-photon absorption cross-section spectra of perylene derivatives obtained via Z-scan technique were fitted by means of a sum-over-states ( SOS) model, which described with accuracy the different regions of the 2PA cross-section spectra. Frontier molecular orbital calculations show that all molecules present similar features, indicating that nonlinear optical properties in PTCDs are mainly determined by the central portion of the molecule, with minimal effect from the lateral side groups. In general, our results pointed out that the differences in the 2PA cross-sections among the compounds are mainly due to the nonlinearity resonance enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the two-photon absorption (2PA) cross-section for bis (n-butylimido) perylene (BuPTCD), bis (benzimidazo) perylene (AzoPTCD), bis (benzimidazo) thioperylene (Monothio BZP), bis (phenethylimido) perylene (PhPTCD), bis (benzylimido) perylene (BePTCD) and n-pentylimido-benzimidazo perylene (PAzoPTCD) solutions measured using the Z-scan technique with femtosecond laser pulses at 775 nm. All perylene derivatives studied present large 2PA cross-sections, only comparable to the best ones reported in the literature. The experimental 2PA cross-sections obtained for each PTCD compound are in good agreement with a simplified sum-over-state calculation. The results of the present work indicates perylene derivatives as promising materials for two-photon applications. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perylene tetracarboxylic derivatives (PTCDs) display exceptionally high two-photon absorption (2PA) cross-sections (6, see Figure). In addition, the 2PA saturation behavior and strong two-photon-pumped fluorescence suggest that PTCD compounds may be attractive candidates for applications in optical limiting and two-photon-pumped upconversion lasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin solid films of bis benzimidazo perylene (AzoPTCD) were fabricated using physical vapor deposition (PVD) technique. Thermal stability and integrity of the AzoPTCD PVD films during the fabrication (similar to 400 degrees C at 10(-6) Torr) were monitored by Raman scattering. Complementary thermogravimetric results showed that thermal degradation of AzoPTCD occurs at 675 degrees C. The growth of the PVD films was established through UV-vis absorption spectroscopy, and the surface morphology was surveyed by atomic force microscopy (AFM) as a function of the mass thickness. The AzoPTCD molecular organization in these PVD films was determined using the selection rules of infrared absorption spectroscopy (transmission and reflection-absorption modes). Despite the molecular packing, X-ray diffraction revealed that the PVD films are amorphous. Theoretical calculations (density functional theory, B3LYP) were used to assign the vibrational modes in the infrared and Raman spectra. Metallic nanostructures, able to sustain localized surface plasmons (LSP) were used to achieve surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface pressure-molecular area (pi-A) isotherms for Langmuir monolayers of four perylenetetracarboxylic (PTCD) derivatives, measured with varying subphase temperatures and compression speeds, are reported. The behavior of these PTCD derivatives at the water-air interface is modeled using the rigid docking method. This approach is the first attempt to model the molecular orientation of PTCD on the water surface to be compared with experimental Langmuir isotherms. Through this methodology, it would be possible to anticipate aggregation and determine if favorable spatial orientations of perylenes are generated on the water surface. The pi-A isotherm experiments show that these molecules can support high surface pressures, indicating strong packing on the water surface and that the isotherms are compression speed independent but temperature dependent. The molecular orientation and stacking was further examined in Langmuir-Blodgett (LB) monolayers deposited onto glass and glass coated with Ag island films using UV-visible absorption and surface-enhanced fluorescence (SEF) measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langmuir films of a tetracarboxylic perylene derivative and polypyrrole display condensed surface pressure isotherms that are shifted when Cu2+ ions are added to the ultrapure water subphase. These films were transferred onto interdigitated gold electrodes leading to Y-type Langmuir-Blodgett (LB) films. The electrodes modified with 5-layer LB films were immersed into a flask with ultrapure water and water containing Cu2+ ions at concentrations ranging from mM to muM. Impedance measurements indicated a distinct electrical response for the two types of films. Although the materials chosen have no specificity for ionic metals, they can be combined for detecting trace levels of Cu2+, which may be exploited in water quality monitoring. (C) 2004 Elsevier B.V. All rights reserved.