943 resultados para Peroxisome-Proliferator-Activated Receptors D


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les récepteurs nucléaires font partie d'une superfamille de facteurs de transcription qui regroupe en particulier les récepteurs des hormones stéroïdes et thyroïdiennes, de la vitamine D3 et des rétinoïdes [1]. Ces facteurs de transcription sont impliqués dans de nombreuses fonctions cellulaires comme le développement embryonnaire, la différenciation cellulaire et le contrôle du métabolisme. Ce sont des protéines importantes en recherche médicale puisque un grand nombre d'entre elles sont impliquées dans des pathologies telles que le cancer, le diabète ou les syndromes de résistance aux hormones. À ce jour, cette superfamille comprend différents membres, dont l'activité est modulée par la présence de ligands spécifiques. Néanmoins, pour nombre d'entre eux, aucun ligand endogène spécifique n'a encore été identifié. Ceux-là sont appelés récepteurs orphelins. Orphelins lors de leur découverte il y a dix ans, les PPARs (Peroxisome proliferator-activated receptors) ont été particulièrement étudiés depuis, permettant de leur attribuer des ligands et des fonctions qui les placent au coeur de nombreuses régulations métaboliques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PPARs are nuclear hormone receptors which, like the retinoid, thyroid hormone, vitamin D, and steroid hormone receptors, are ligand-activated transcription factors mediating the hormonal control of gene expression. Two lines of evidence indicate that PPARs have an important function in fatty acid metabolism. First, PPARs are activated by hypolipidemic drugs and physiological concentrations of fatty acids, and second, PPARs control the peroxisomal beta-oxidation pathway of fatty acids through transcriptional induction of the gene encoding the acyl-CoA oxidase (ACO), which is the rate-limiting enzyme of the pathway. Furthermore, the PPAR signaling pathway appears to converge with the 9-cis retinoic acid receptor (RXR) signaling pathway in the regulation of the ACO gene because heterodimerization between PPAR and RXR is essential for in vitro binding to the PPRE and because the strongest stimulation of this gene is observed when both receptors are exposed simultaneously to their activators. Thus, it appears that PPARs are involved in the 9-cis retinoic acid signaling pathway and that they play a pivotal role in the hormonal control of lipid metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear peroxisome proliferator-activated receptors (PPARs) alpha, beta, and gamma activate the transcription of multiple genes involved in lipid metabolism. Several natural and synthetic ligands have been identified for each PPAR isotype but little is known about the phosphorylation state of these receptors. We show here that activators of protein kinase A (PKA) can enhance mouse PPAR activity in the absence and the presence of exogenous ligands in transient transfection experiments. Activation function 1 (AF-1) of PPARs was dispensable for transcriptional enhancement, whereas activation function 2 (AF-2) was required for this effect. We also show that several domains of PPAR can be phosphorylated by PKA in vitro. Moreover, gel retardation experiments suggest that PKA stabilizes binding of the liganded PPAR to DNA. PKA inhibitors decreased not only the kinase-dependent induction of PPARs but also their ligand-dependent induction, suggesting an interaction between both pathways that leads to maximal transcriptional induction by PPARs. Moreover, comparing PPAR alpha knockout (KO) with PPAR alpha WT mice, we show that the expression of the acyl CoA oxidase (ACO) gene can be regulated by PKA-activated PPAR alpha in liver. These data demonstrate that the PKA pathway is an important modulator of PPAR activity, and we propose a model associating this pathway in the control of fatty acid beta-oxidation under conditions of fasting, stress, and exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the anti-inflammatory, antidiabetic and hypolipidemic effects of soy isoflavones may be mediated by activation of peroxisome proliferator-activated receptors (PPAR), the present study investigated whether the methanolic fractions obtained from soybean seeds (E1) and soybean seed coats with hypocotyls (E2) could influence PPARα, PPARγ and PPARβ/δ transcriptional activity. The isoflavones from E1 and E2 were quantified by HPLC analysis. E1 and E2 were rich in isoflavones (daidzin, glycitin, genistin, malonyldaidzin, malonylglycitin, malonylgenistin, daidzein, glycitein, and genistein). Moreover, E1 and E2 showed no evidence of genetically modified material containing the gene CP4 EPSPS. To investigate PPAR transcriptional activity, human promonocytic U-937 cells were treated with E1 and E2 (200, 400, 800, and 1600 µg/mL), positive controls or vehicle. Data are reported as fold-activation of the luciferase reporter driven by the PPAR-responsive element. Dose-response analysis revealed that E1 and E2 induced the transcriptional activity of PPARα (P < 0.001), with activation comparable to that obtained with 0.1 mM bezafibrate (positive control) at 1600 µg/mL (4-fold) and 800 µg/mL (9-fold), respectively. In addition, dose-response analysis revealed that E1 and E2 activated PPARβ/δ (P < 0.05), and the activation at 800 µg/mL (4- and 9-fold, respectively) was comparable to that of 0.1 mM bezafibrate (positive control). However, no effect on PPARγ was observed. Activation of PPARα is consistent with the lipid-lowering activity of soy isoflavones in vivo, but further studies are needed to determine the physiological significance of PPARβ/δ activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcription factors. There are three genes that code for the PPAR isoforms: PPAR alpha, PPAR beta and PPAR gamma. In the present review, studies characterizing the various PPAR isoforms are discussed. Peroxisome proliferator-activated receptor alpha has been implicated in the lipid-lowering effects of the fibrate drugs. Peroxisome proliferator-activated receptor gamma has a clear role in adipocyte differentiation and is therapeutically targeted by the thiazolidinedione drugs for the treatment of type II diabetes. The physiological role of PPAR beta is less well understood but, as described in the present review, recent studies have implicated it with a role in colon cancer. In the present review, particular attention is focused on the role of PPAR in the regulation of expression of proteins associated with cell cycle control and tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily that can be activated by various xenobiotics and natural fatty acids. These transcription factors primarily regulate genes involved in lipid metabolism and also play a role in adipocyte differentiation. We present the expression patterns of the PPAR subtypes in the adult rat, determined by in situ hybridization using specific probes for PPAR-alpha, -beta and -gamma, and by immunohistochemistry using a polyclonal antibody that recognizes the three rat PPAR subtypes. In numerous cell types from either ectodermal, mesodermal, or endodermal origin, PPARs are coexpressed, with relative levels varying between them from one cell type to the other. PPAR-alpha is highly expressed in hepatocytes, cardiomyocytes, enterocytes, and the proximal tubule cells of kidney. PPAR-beta is expressed ubiquitously and often at higher levels than PPAR-alpha and -gamma. PPAR-gamma is expressed predominantly in adipose tissue and the immune system. Our results suggest new potential directions to investigate the functions of the different PPAR subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) alpha and gamma are key regulators of lipid homeostasis and are activated by a structurally diverse group of compounds including fatty acids, eicosanoids, and hypolipidemic drugs such as fibrates and thiazolidinediones. While thiazolidinediones and 15-deoxy-Delta12, 14-prostaglandin J2 have been shown to bind to PPARgamma, it has remained unclear whether other activators mediate their effects through direct interactions with the PPARs or via indirect mechanisms. Here, we describe a novel fibrate, designated GW2331, that is a high-affinity ligand for both PPARalpha and PPARgamma. Using GW2331 as a radioligand in competition binding assays, we show that certain mono- and polyunsaturated fatty acids bind directly to PPARalpha and PPARgamma at physiological concentrations, and that the eicosanoids 8(S)-hydroxyeicosatetraenoic acid and 15-deoxy-Delta12,14-prostaglandin J2 can function as subtype-selective ligands for PPARalpha and PPARgamma, respectively. These data provide evidence that PPARs serve as physiological sensors of lipid levels and suggest a molecular mechanism whereby dietary fatty acids can modulate lipid homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPAR) alpha, beta/delta and gamma belong to the nuclear hormone receptor superfamily. As ligand-activated receptors, they form a functional transcriptional unit upon heterodimerization with retinoid X receptors (RXRs). PPARs are activated by fatty acids and their derivatives, whereas RXR is activated by 9-cis retinoic acid. This heterodimer binds to peroxisome proliferator response elements (PPRE) residing in target genes and stimulates their expression. Recent reports now indicate that PPARs and RXRs can function independently, in the absence of a hetero-partner, to modulate gene expression. Of importance, these non-canonical mechanisms underscore the impact of both cofactors and DNA on gene expression. Furthermore, these different mechanisms reveal the increasing repertoire of PPAR 'target' genes that now encompasses non-PPREs containing genes. It is also becoming apparent that understanding the regulation of PPAR expression and activity, can itself have a significant influence on how the expression of subgroups of target genes is studied and integrated in current knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver fatty-acid-binding protein (L-FABP) is a cytoplasmic polypeptide that binds with strong affinity especially to long-chain fatty acids (LCFAs). It is highly expressed in both the liver and small intestine, where it is thought to have an essential role in the control of the cellular fatty acid (FA) flux. Because expression of the gene encoding L-FABP is increased by both fibrate hypolipidaemic drugs and LCFAs, it seems to be under the control of transcription factors, termed peroxisome-proliferator-activated receptors (PPARs), activated by fibrate or FAs. However, the precise molecular mechanism by which these regulations take place remain to be fully substantiated. Using transfection assays, we found that the different PPAR subtypes (alpha, gamma and delta) are able to mediate the up-regulation by FAs of the gene encoding L-FABP in vitro. Through analysis of LCFA- and fibrate-mediated effects on L-FABP mRNA levels in wild-type and PPARalpha-null mice, we have found that PPARalpha in the intestine does not constitute a dominant regulator of L-FABP gene expression, in contrast with what is known in the liver. Only the PPARdelta/alpha agonist GW2433 is able to up-regulate the gene encoding L-FABP in the intestine of PPARalpha-null mice. These findings demonstrate that PPARdelta can act as a fibrate/FA-activated receptor in tissues in which it is highly expressed and that L-FABP is a PPARdelta target gene in the small intestine. We propose that PPARdelta contributes to metabolic adaptation of the small intestine to changes in the lipid content of the diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors, PPARs, (NR1C) are nuclear hormone receptors implicated in energy homeostasis. Upon activation, these ligand-inducible transcription factors stimulate gene expression by binding to the promoter of target genes. The different structural domains of PPARs are presented in terms of activation mechanisms, namely ligand binding, phosphorylation, and cofactor interaction. The specificity of ligands, such as fatty acids, eicosanoids, fibrates and thiazolidinediones (TZD), is described for each of the three PPAR isotypes, alpha (NR1C1), beta (NR1C2) and gamma (NR1C3), so as the differential tissue distribution of these isotypes. Finally, general and specific functions of the PPAR isotypes are discussed, namely their implication in the control of inflammatory responses, cell proliferation and differentiation, the roles of PPARalpha in fatty acid catabolism and of PPARgamma in adipogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Peroxisome proliferator-activated receptors alpha, beta/delta and gamma are members of the nuclear receptor superfamily. They mediate the effects of fatty acids and their derivatives at the transcriptional level, and are considered to be lipid sensors that participate in the regulation of energy homeostasis. Compared with the alpha and gamma peroxisome proliferator-activated receptor isotypes, peroxisome proliferator-activated receptor beta functions have long remained an enigma. In this review, we focus on emerging knowledge about peroxisome proliferator-activated receptor beta activation and roles. RECENT FINDINGS: We review recent data that suggest key roles in basic cell functions, such as proliferation, differentiation and survival, and in embryonic development and lipid metabolism in peripheral tissues. SUMMARY: The newly unveiled roles of peroxisome proliferator-activated receptor beta in important basic cell functions certainly justify a further exploration of its potential as a therapeutic target in pathologies such as metabolic syndrome X or skin diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic disorders, such as obesity, diabetes, inflammation, non-alcoholic fatty liver disease and atherosclerosis, are related to alterations in lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPAR)α, PPARβ/δ and PPARγ are involved. These receptors form a subgroup of ligand-activated transcription factors that belong to the nuclear hormone receptor family. This review discusses a selection of novel PPAR functions identified during the last few years. The PPARs regulate processes that are essential for the maintenance of pregnancy and embryonic development. Newly found hepatic functions of PPARα are the mediation of female-specific gene repression and the protection of the liver from oestrogen induced toxicity. PPARα also controls lipid catabolism and is the target of hypolipidaemic drugs, whereas PPARγ controls adipocyte differentiation and regulates lipid storage; it is the target for the insulin sensitising thiazolidinediones used to treat type 2 diabetes. Activation of PPARβ/δ increases lipid catabolism in skeletal muscle, the heart and adipose tissue. In addition, PPARβ/δ ligands prevent weight gain and suppress macrophage derived inflammation. In fact, therapeutic benefits of PPAR ligands have been confirmed in inflammatory and autoimmune diseases, such as encephalomyelitis and inflammatory bowel disease. Furthermore, PPARs promote skin wound repair. PPARα favours skin healing during the inflammatory phase that follows injury, whilst PPARβ/δ enhances keratinocyte survival and migration. Due to their collective functions in skin, PPARs represent a major research target for our understanding of many skin diseases. Taken altogether, these functions suggest that PPARs serve as physiological sensors in different stress situations and remain valuable targets for innovative therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigating metabolism by unveiling the functions of the nuclear receptors peroxisome proliferator-activated receptors (PPARs) in the numerous intricate pathways ensuring energy homeostasis and fitness has been extremely rewarding. Major lines of research were initially determined by the first-characterized crucial roles of PPARalpha in fatty oxidation and of PPARgamma in adipocyte differentiation and lipid storage. Today, the molecular bases of the functional links between glucose, lipid, and protein metabolism, under the important but nonexclusive control of PPARalpha and PPARgamma, are starting to be uncovered. In addition, in the last couple of years evidence has been provided for an important role of PPARbeta (delta) in lipid metabolism. Inevitably, such actors of metabolic homeostasis are implicated in the physiopathology of complex metabolic disorders, such as those constituting the metabolic syndrome, resulting in atherosclerosis and cardiovascular diseases. This review presents a summary of the recent findings on their dual involvement in health and disease.