969 resultados para Perovskite oxide ferroelectric thin films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SnO2 nanocrystalline thin films were deposited on glass substrates by the spray pyrolysis technique in air atmosphere at 375, 400, 425, 450 and 500 ◦C substrate temperatures. The obtained films were characterized by using XRD. The room temperature photoluminescence (PL) spectra of these films have near band edge (NBE) and deep level emission under the excitation of 325 nm radiation. NBE PL peak intensity decreased consistently with temperatures for samples prepared at 400, 450 and 500 ◦C, while a sudden reduction in intensity is observed for the sample prepared at 425 ◦C. A similar effect was observed for the optical transmittance spectra. These effects can be explained on the basis of the change in population of oxygen vacancies as indicated by the change in a values

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bi3.25La0.75Ti3O12 (BLT) thin films were grown on LaNiO3 (LNO), RuO2 (RuO2) and La0.5Sr0.5CoO3 (LSCO) bottom electrodes by using the polymeric precursor method and microwave furnace. The bottom electrode is found to be an important parameter which affects the crystallization, morphology and leakage current behaviors. The XRD results clearly show that film deposited on LSCO electrode favours the growth of (117) oriented grains whereas in films deposited on LNO and RuO2 the growth of (001) oriented grains dominated. The film deposited on LSCO has a plate-like grain structure, and its leakage current behavior is in agreement with the prediction of the space-charge-limited conduction model. on the other hand, the films deposited on RuO2 and LNO electrodes present a rounded grain shape with some porosity, and its high field conduction is well explained by the Schottky and Poole-Frenkel emission models. The remanent polarization (P-r) and the drive voltage (V-c) were in the range of 11-23 mu C cm(-2) and 0.86-1.56 V, respectively, and are better than the values found in the literature. (c) 2007 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AC electric field and temperature dependences of the dielectric permittivity for strontium barium niobate (Sr(0.75)Ba(0.25)Nb(2)O(6)) relaxor ferroelectric thin films have been investigated. The results indicate the existence of a true mesoscopic structure evidenced by the nonlinear dielectric response of these films, which is similar to those observed for bulk relaxor ferroelectrics. A tendency for a temperature dependent crossover from a linear to a quadratic behaviour of the dielectric nonlinearity was observed, indicating an evolution from paraelectric to glass-like behaviour on cooling the samples towards the freezing temperature transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ac and dc driving fields dependence of the dielectric permittivity for the strontium barium niobate relaxor ferroelectric thin films has been investigated. The nonlinear dielectric properties were obtained by using the measurements of the dielectric permittivity of the material as a function of the ac and dc "bias" electric field amplitude in wide frequency (100 Hz-10 MHz) and temperature (50-450 K) intervals. The results hint the existence of a true mesoscopic dielectric relaxor response in the ferroelectric thin film, which is very similar to those observed in bulk relaxor ferroelectrics. An anomalous behavior of the NL dielectric response was observed when submitted to moderate dc electric fields levels,,indicating a crossover from paraelectric to a glasslike behavior on cooling the sample toward the freezing transition. The obtained results were analyzed within the framework of the models proposed in the current literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, was proposed a chemical method for preparation of ferroelectric thin films based on oxide precursors. In this work, PZT thin films were prepared to attest the viability of this method for cation-substitution. In this study, a small concentration of Nb (5 mol%) was selected as substitute of B-site in ABO 3 structure of PZT. Dielectric and ferroelectric properties of PZT films were studied as a function of cation-substitution. Results for Nb-PZT were compared with PZT films undoped. The values of dielectric constant, at typical 100 kHz frequency, were 358 and 137, for PZT and Nb-PZT films respectively. Remanent polarizations of these films were respectively 7.33 μ C/cm 2 and 13.3 μ C/cm 2 , while the measured coercive fields were 101 kV/cm and 93 kV/cm. As a result, changes on observed dielectric and ferroelectric values confirm the Nb substitution in PZT thin film produced by oxide precursor method. © 2002 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lanthanum lutetium oxide (LaLuO3) thin films were investigated considering their perspective application for industrial microelectronics. Scanning probe microscopy (SPM) techniques permitted to visualize the surface topography and study the electric properties. This work compared both the material properties (charge behavior for samples of 6 nm and 25 nm width) and the applied SPM modes. Particularly, Kelvin probe force microscopy (KPFM) was applied to characterize local potential difference with high lateral resolution. Measurements showed the difference in morphology, chargeability and charge dissipation time for both samples. The polarity effect was detected for this material for the first time. Lateral spreading of the charged spots indicate the diffusive mechanism to be predominant in charge dissipation. This allowed to estimate the diffusion coefficient and mobility. Using simple electrostatic model it was found that charge is partly leaking into the interface oxide layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were deposited on quartz, silicon, and polymer substrates by pulsed laser deposition (PLD) technique at different oxygen partial pressures (0.007 mbar to 0.003 mbar). Polycrystalline ZnO films were obtained at room temperature when the oxygen pressure was between 0.003 mbar and .007 mbar, above and below this pressure the films were amorphous as indicated by the X-ray diffraction (XRD). ZnO films were deposited on Al2O3 (0001) at different substrate temperatures varying from 400oC to 600oC and full width half maximum (FWHM) of XRD peak is observed to decrease as substrate temperature increases. The optical band gaps of these films were nearly 3.3 eV. A cylindrical Langmuir probe is used for the investigation of plasma plume arising from the ZnO target. The spatial and temporal variations in electron density and electron temperature are studied. Optical emission spectroscopy is used to identify the different ionic species in the plume. Strong emission lines of neutral Zn, Zn+ and neutral oxygen are observed. No electronically excited O+ cations are identified, which is in agreement with previous studies of ZnO plasma plume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferroelectric thin films belong to a class of materials with great technological importance in optic fibers, micro-electromechanical systems, and microprocessors and computers memories.The (1-x)PbMg1/3Nb2/3O3(x)PbTiO3 (PMN-PT) thin films, with x=0, 0.1, 0.35 and 0.5, were prepared by Pechini's process and deposited by spin-coating on Si(100), Pt/Ti/SiO2/Si(100) and quartz substrates. The goal of the present paper is to verify the thermal treatment influence on the perovskite phase formation, which is desirable for these applications. The phase formation was analyzed by X-ray diffraction. The film's surface was characterized by atomic force microscopy to analyze the roughness and the homogeneity. The results of this study indicate that the optimum conditions for obtaining the perovskite phase using a Pt/Ti/SiO2/Si(100) substrate, were drying each deposited layer at 140 degreesC (heating plate), and a final thermal treatment at 600 degreesC for 3 h in a closed system with a lead-rich atmosphere. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium bismuth tantalate thin films were prepared on several substrates (platinized silicon (PvTi/SiO2/Si), n-type (100)-oriented and p-type (111)-oriented silicon wafers, and fused silica) by the solution deposition method. The resin was obtained by the polymeric precursor method, based on the Pechini process, using strontium carbonate, bismuth oxide, and tantalum ethoxide as starting reagents. Characterizations by XRD and SEM were performed for structural and microstructural evaluations. The electrical measurements, carried on the MFM configuration, showed P-r values of 6.24 muC/cm(2) and 31.5 kV/cm for the film annealed at 800 degreesC. The film deposited onto fused silica and treated at 700 degreesC presented around 80 % of transmittance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline SrBi2Nb2O9-layered ferroelectric thin films were synthesized on Pt/Ti/SiO2/Si substrate using the polymeric precursors solution. The dip-coated films were specular and crack-free and crystallized during firing at 700 °C. Single-, double-, and triple-layered films were obtained by several dips in the deposition solution, and the influence of crystallization between each dip was studied. Microstructure and morphological evaluation were followed by grazing incident x-ray diffraction (GIXRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Multilayered films obtained using the intermediate-crystallized layer route present a dense microstructure with spherical grains, with a preferential orientation in the 〈215〉 direction; films obtained using the intermediate-amorphous layer route are polycrystalline and present elongated grains around 250 nm in size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.