82 resultados para Permeabilities
Resumo:
The quality of plastic films used for horizontal silos is important to limit losses in the upper silage layer. The aim of this work was to study the effectiveness of different plastic films in reducing the top losses in maize silage. The following treatments were evaluated: (i) coextruded polyethylene/polyamide oxygen barrier film (OB), (ii) polyethylene film (PE), (iii) polyvinyl chloride film (PVC), and (iv) coextruded PE/polyvinyl alcohol film (PVOH). These treatments differed according to oxygen permeability with values of 75, 722, 982 and 289 cm(3) m(-2) per 24 hour respectively. OB and PVOH films had better temperature and fermentation profiles than the more permeable films. The OB film was effective in reducing the dry-matter (DM) losses during storage (82 g kg(-1)), and the PVOH film had an intermediate value of DM loss (101 g kg(-1)). PE and PVC films had higher losses (138 and 145 g kg(-1) respectively). Oxygen permeability of the films promoted a positive correlation with DM losses (P < 0.05; r2 = 0.945). The results indicate that O2 permeability through the plastic film is a crucial factor for maintaining silage quality in the upper layer of the silo when it is perfectly sealed.
Resumo:
Mammalian glycosylated rhesus (Rh) proteins include the erythroid RhAG and the nonerythroid RhBG and RhCG. RhBG and RhCG are expressed in multiple tissues, including hepatocytes and the collecting duct (CD) of the kidney. Here, we expressed human RhAG, RhBG and RhCG in Xenopus oocytes (vs. H2O-injected control oocytes) and used microelectrodes to monitor the maximum transient change in surface pH (ΔpHS) caused by exposing the same oocyte to 5 % CO2/33 mM HCO3 − (an increase) or 0.5 mM NH3/NH4 + (a decrease). Subtracting the respective values for day-matched, H2O-injected control oocytes yielded channel-specific values (*). (ΔpH∗S)CO2 and (−ΔpH∗S)NH3 were each significantly >0 for all channels, indicating that RhBG and RhCG—like RhAG—can carry CO2 and NH3. We also investigated the role of a conserved aspartate residue, which was reported to inhibit NH3 transport. However, surface biotinylation experiments indicate the mutants RhBGD178N and RhCGD177N have at most a very low abundance in the oocyte plasma membrane. We demonstrate for the first time that RhBG and RhCG—like RhAG—have significant CO2 permeability, and we confirm that RhAG, RhBG and RhCG all have significant NH3 permeability. However, as evidenced by (ΔpH∗S)CO2/(−ΔpH∗S)NH3 values, we could not distinguish among the CO2/NH3 permeability ratios for RhAG, RhBG and RhCG. Finally, we propose a mechanism whereby RhBG and RhCG contribute to acid secretion in the CD by enhancing the transport of not only NH3 but also CO2 across the membranes of CD cells.
Some Preliminary Investiagtions of the Magnetic Permeabilities of Alloys of the Ferromagnetic Metals
Resumo:
The problem presented for this thesis was an investigation of the magnetic properties of the alloys produced by the methods of powder metallurgy. The question behind this was the correlation of the magnetic properties with the bonding properties and with the diffusion of the constituents.
Resumo:
Powder metallurgy is a branch of metallurgy which produces metallic compacts in their final forms by means of pressure and heat-treatment from the powders. The products of powder metallurgy are being used in our daily lives quite often. For example, the tungsten wires in the electric bulbs to the silver-tin fillings of our teeth.
Resumo:
Understanding the role of fluids in active accretionary prisms requires quantitative knowledge of parameters such as permeability. We report here the results of permeability tests on four samples from Ocean Drilling Program Leg 190 at the Nankai Trough accretionary prism-two from Site 1173 and two from Site 1174. Volcanic ash is present in one of the samples; otherwise, the material is hemipelagic mud. A constant-rate-of-flow technique was used at various effective pressures and rates of flow. The permeability of the four samples ranges between 10**-15 and 10**-18 m**2, with the ash-bearing sample showing the highest values.
Resumo:
The results of laboratory consolidation tests and undrained shear strength determinations of sediments from the Oki Ridge and the Kita Yamato Trough show that the sediments are overconsolidated to normally consolidated to a depth of about 20 m below the seafloor. Below that depth, the sediments are highly underconsolidated, implying high excess pore-water pressures. The most probable mechanism for the generation of the excess pore-water pressure is gas in sediments.
Resumo:
Uniaxial strain consolidation experiments were conducted to determine elastic and plastic properties and to estimate the permeability of sediments from 0 to 200 meters below seafloor at Ocean Drilling Program Sites 1194 and 1198. Plastic deformation is described by compression indices, which range from 0.19 to 0.37. Expansion indices, the elastic deformation measured during unload/reload cycles on samples, vary from 0.02 to 0.029. Consolidation experiments provide lower bounds on permeability between 5.4 x 10**-16 m**2 and 1.9 x 10**-18 m**2, depending on the consolidation state of the sample.
Resumo:
Constant-pressure difference and constant-flow permeability tests were conducted on core samples from Ocean Drilling Program Legs 170 and 205 from the Costa Rica subduction zone representing pelagic carbonate and hemipelagic mud lithologies. Seven whole-round core samples from Sites 1040, 1253, and 1255 were tested for vertical permeabilities. The permeabilities of the pelagic carbonate sediments range from ~4 x 10**-16 to ~1 x 10**-15 m**2. The permeabilities of the hemipelagic mud sediments vary from ~2 x 10**-18 to ~4 x 10**-18 m**2. To further characterize the sediments, grain size, total carbon, and total inorganic carbon analyses were conducted.