999 resultados para Permanent chemical modifier
Resumo:
A tungsten carbide coating on the integrated platform of a transversely heated graphite atomizer was used as a modifier for the direct determination of Se in soil extracts by graphite furnace atomic absorption spectrometry. Diethylenetriaminepentaacetic acid (0.0050 mol L-1) plus ammonium hydrogencarbonate (1.0 mol L-1) extracted predominantly available inorganic selenate from soil. The formation of a large amount of carbonaceous residue inside the atomizer was avoided with a first pyrolysis step at 600 degreesC assisted by air during 30 s. For 20 muL of soil extracts delivered to the atomizer and calibration by matrix matching, an analytical curve (10.0-100 mug of L-1) with good linear correlation (r = 0.999) between integrated absorbance and analyte concentration was established. The characteristic mass was similar to63 pg of Se, and the lifetime of the tube was similar to750 firings. The limit of detection was 1.6 mug L-1, and the relative standard deviations (n = 12) were typically <4% for a soil extract containing 50 mug of L-1. The accuracy of the determination of Se was checked for soil samples by means of addition/recovery tests. Recovery data of Se added to four enriched soil samples varied from 80 to 90% and indicated an accurate method.
Resumo:
A tungsten carbide coating on the integrated platform of a transversely heated graphite atomizer (THGA((R))) used together with Pd(NO3)(2) + Mg(NO3)(2) as modifier is proposed for the direct determination of lead in vinegar by graphite furnace atomic absorption spectrometry. The optimized heating program (temperature, ramp time, hold time) of atomizer involved drying stage (110 degrees C, 5 s, 30 s; 130 degrees C, 5 s, 30 s), pyrolysis stage (1000 degrees C, 15 s, 30 s), atomization stage (1800 degrees C, 0 s, 5 s) and clean-out stage (2450 degrees C, I s, 3 s). For 10 mu L of vinegar delivered into the atomizer and calibration using working standard solutions (2.5-20.0 mu g L-1 Pb) in 0.2% (v/v) HNO3, analytical curve with good linear correlation (r = 0.9992) was established. The characteristic mass was 40 pg Pb and the lifetime of the tube was around 730 firings. The limit of detection (LOD) was 0.4 mu g L-1 and the relative standard deviations (n = 12) were typically <8% for a sample containing 25 pg L-1 Pb. Accuracy of the proposed method was checked after direct analysis of 23 vinegar samples. A paired t-test showed that results were in agreement at 95% confidence level with those obtained for acid-digested vinegar samples. The Pb levels varied from 2.8 to 32.4 pg L-1. Accuracy was also checked by means of addition/recovery tests and recovered values varied from 90% to 110%. Additionally, two certified reference materials were analyzed and results were in agreement with certified values at a 95% confidence level. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A flow cell assembled on the original geometry of a graphite tube to achieve permanent chemical modifier is proposed. The graphite tube operates as the working electrode. A stainless steel tube, positioned downstream from the working electrode, was used as the auxiliary electrode. The potential value applied on the graphite electrode was measured against a micro reference electrode (Ag/AgCl) inserted into the auxiliary electrode. Palladium solutions in acetate buffer (100 mmol L-1, pH = 4.8), flowing at 0.5 mL min-1 for 60 min was used to perform the electrochemical modification. A mercury solution (1 ng) was used to evaluate the performance of the permanent palladium modifier.
Resumo:
This work describes a factorial design for the optimization of pyrolysis and atomization temperatures in ETAAS. As examples, Cd and Pb were determined using lower pyrolysis and atomization temperatures and Al and Mo with higher pyrolysis and atomization temperatures. Good results were obtained for Cd employing Rh (m o = 1.4 pg) as a permanent modifier with pyrolysis and atomization temperatures of 640 and 1500 °C, respectively. For Zr, W or Zr+W, the Cd pyrolysis and atomization temperatures were 500 and 1500 °C, respectively, with m o = 1.4 pg using Zr or W and 1.5 pg using Zr+W. The best results for Pb were those using Rh, Zr, W and Zr+Rh, obtaining characteristic masses of 42, 37, 34 and 36 pg, respectively. Pyrolysis and atomization temperatures of 910 and 1850 °C, respectively, were achieved for this metal. For Al, the best results were obtained when Zr or Zr+W were used. Mo was also tested as a possible permanent modifier for Al, but the results were not satisfactory. The results obtained for Mo without modifier were similar to those with conventional modifiers (Mg or Pd+Mg) and the results obtained using permanent chemical modifiers were not satisfactory. In all situations, the experiments were performed faster than those using the univariate procedure.
Resumo:
A tubular electrochemical flow-cell for iridium deposition on the inner surface of pyrolytic graphite tube for permanent chemical modification is proposed. A transversal heated graphite tube was used as working electrode, a cylindrical piece of graphite inserted into the graphite tube as auxiliary electrode, and a micro Ag/AgCl(sat) as reference electrode. Iridium solution in 1.0 mol L-1 HCl, flowing at 0.55 mL min-1 for 60 min was used to perform the electrochemical modification. The applied potential to the flow-cell was - 0.700 V vs Ag/AgCl. Scanning electron microscopy images were taken for thermal and electrochemical modified graphite surface in order to evaluate the iridium distribution. Selenium hydride trapping was used to verify the performance of the proposed permanent chemical modifier.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a simple, fast and sensitive method to determine chromic oxide (used as a biological marker of fish feed) in samples of fish feces by GFAAS through the direct introduction of slurries of the samples into the spectrometer's graphite tube. The standard samples of feces and of fish feed containing 0.10-1.00 mg kg(-1) of Cr2O3 were pre-frozen for I min in liquid nitrogen and then ground a cryogenic mill for 2 min, which reduced the samples' grain size to less than 60 mu m. The standard slurries were prepared by mixing 20 mg of standard samples of fish feed or feces with I mL of a solution containing 0.05% (v/v) of Triton X-100 and 0.50% (v/v) of suprapure HNO3 directly in the spectrometer's automatic sampling glass. The final concentrations of Cr2O3 present in the standard slurries were 2, 4, 8, 16 and 20 mu g L-1. After sonicating the mixture for 20s, 10 mu L of standard slurries were injected into the graphite tube, whose internal wall was lined with a metallic palladium film that acted as a permanent chemical modifier. The limits of detection (LOD) and quantification (LOQ) calculated for 20 readings of the blank of the standard slurries (2%, m/v of feces or feed devoid of minerals) were 0.81 and 2.70 mu g L-1 of Cr2O3 for the standard feces slurries, 0.84 and 2.83 mu g L-1 of Cr2O3 for the standard feed slurries. The proposed method was applied in studies of nutrient digestibility of different fish feeds and its results proved compatible with the results obtained from samples pre-mineralized by acid digestion. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A method has been developed for the simultaneous determination of Cd and Pb in antibiotics used in sugar-cane fermentation by GFAAS. The integrated platform of transversely heated graphite atomizer was treated with tungsten to form a coating of tungsten carbide. Six samples of commercial solid antibiotics were analyzed by injecting 20 µL of digested samples into the pretreated graphite platform with co-injection of 5 µL of 1000 mg L-1 Pd as chemical modifier. Samples were mineralized in a closed-vessel microwave-assisted acid-digestion system using nitric acid plus hydrogen peroxide. The pyrolysis and atomization temperatures of the heating program of the atomizer were selected as 600°C and 2200°C, respectively. The calculated characteristic mass for Cd and Pb was 1.6 pg and 42 pg, respectively. Limits of detection (LOD) based on integrated absorbance were 0.02 µg L-1 Cd and 0.7 µg L-1 Pb and the relative standard deviations (n = 10) for Cd and Pb were 5.7% and 8.0%, respectively. The recoveries of Cd and Pb added to the digested samples varied from 91% to 125% (Cd) and 80% to 112% (Pb).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A method has been developed for the simultaneous determination of Cd and Pb in antibiotics used in sugar-cane fermentation by GFAAS. The integrated platform of transversely heated graphite atomizer was treated with tungsten to form a coating of tungsten carbide. Six samples of commercial solid antibiotics were analyzed by injecting 20 μL of digested samples into the pretreated graphite platform with co-injection of 5 μL of 1000 mg L-1 Pd as chemical modifier. Samples were mineralized in a closed-vessel microwave-assisted acid-digestion system using nitric acid plus hydrogen peroxide. The pyrolysis and atomization temperatures of the heating program of the atomizer were selected as 600°C and 2200°C, respectively. The calculated characteristic mass for Cd and Pb was 1.6 pg and 42 pg, respectively. Limits of detection (LOD) based on integrated absorbance were 0.02 μg L -1 Cd and 0.7 μg L-1 Pb and the relative standard deviations (n = 10) for Cd and Pb were 5.7% and 8.0%, respectively. The recoveries of Cd and Pb added to the digested samples varied from 91% to 125% (Cd) and 80% to 112% (Pb).
Resumo:
In the present study, a simple, rapid and sensitive method was developed for the determination of mercury concentrations in the muscle tissue of fish from the Brazilian Amazon using graphite furnace atomic absorption spectrometry (GFAAS) following acid mineralization of the samples in an ultrasonic cold water bath. Using copper nitrate as a chemical modifier in solution and sodium tungstate as permanent modifier, we were able to attain thermal stabilization of the mercury up to the atomisation temperature of 1600 °C in the GFAAS assay. The calculated limits of detection (LOD) and quantification (LOQ) were 0.014 and 0.047 mg kg-1, respectively. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Química - IQ