7 resultados para Perkinsiella


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiji leaf gall, caused the Fiji disease virus (genus Fijivirus, family Reoviridae, FDV), is a serious disease of sugarcane, Saccharum officinarum L., in Australia and several other Asia-Pacific countries. In Australia FDV is transmitted only by the planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae), in a propagative manner. Successful transmission of FDV by single planthoppers confined to individual virus free plants is highly variable, even under controlled conditions. The research reported here addresses two possible sources of this variation: 1) gender, wing form, and life stage of the planthopper; and 2) genotype of the source plant. The acquisition of FDV by macropterous males, macropterous females, brachypterous females, and nymphs of P. saccharicida from infected plants was investigated using reverse transcription-polymerase chain reaction to diagnose FDV infection in the vector. The proportion of individuals infected with FDV was not statistically related to life stage, gender, or adult wing form of the vector. The acquisition of FDV by P. saccharicida from four cultivars of sugarcane was compared to assess the influence of plant genotype on acquisition. Those planthopper populations reared on diseased 'NCo310' plants had twice as many infected planthoppers as those reared on 'Q110', 'WD1', and 'WD2'. Therefore, variation in FDV acquisition in this system is not the result of variation in the gender, wing form and life stage of the P. saccharicida vectors. The cultivar used as the source plant to rear vector populations does affect the proportion of infected planthoppers in a population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiji leaf gall (FLG) caused by Sugarcane Fiji disease virus (SCFDV) is transmitted by the planthopper Perkinsiella saccharicida. FLG is managed through the identification and exploitation of plant resistance. The glasshouse-based resistance screening produced inconsistent transmission results and the factors responsible for that are not known. A series of glasshouse trials conducted over a 2-year period was compared to identify the factors responsible for the erratic transmission results. SCFDV transmission was greater when the virus was acquired by the vector from a cultivar that was susceptible to the virus than when the virus was acquired from a resistant cultivar. Virus acquisition by the vector was also greater when the vector was exposed to the susceptible cultivars than when exposed to the resistant cultivar. Results suggest that the variation in transmission levels is due to variation in susceptibility of sugarcane cultivars to SCFDV used for virus acquisition by the vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiji leaf gall (FLG) is an important virally induced disease in Australian sugarcane. It is confined to southern canegrowing areas, despite its vector, the delphacid planthopper Perkinsiella saccharicida, occurring in all canegrowing areas of Queensland and New South Wales. This disparity between distributions could be a result of successful containment of the disease through quarantine and/or geographical barriers, or because northern Queensland populations of Perkinsiella may be poorer vectors of the disease. These hypotheses were first tested by investigating variation in the ITS2 region of the rDNA fragment among eastern Australian and overseas populations of Perkinsiella. The ITS2 sequences of the Western Australian P. thompsoni and the Fijian P. vitiensis were distinguishable from those of P. saccharicida and there was no significant variation among the 26 P. saccharicida populations. Reciprocal crosses of a northern Queensland and a southern Queensland population of P. saccharicida were fertile, so they may well be conspecific. Single vector transmission experiments showed that a population of P. saccharicida from northern Queensland had a higher vector competency than either of two southern Queensland populations. The frequency of virus acquisition in the vector populations was demonstrated to be important in the vector competency of the planthopper. The proportion of infected vectors that transmitted the virus to plants was not significantly different among the populations tested. This study shows that the absence of FLG from northern Queensland is not due to a lack of vector competency of the northern population of P. saccharicida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Populations of the planthopper vector Perkinsiella saccharicida on sugarcane cultivars resistant (cvs Q110 and Q87), moderately resistant (cvs Q90 and Q124) and susceptible (evs NCo310 and Q 102) to Fiji disease with known field resistance scores were monitored on the plant (2000-2001) and ratoon (2001-2002) crops. In both crops, the vector population remained very low, reaching its peak in the autumn. The vector population was significantly higher on cultivars susceptible to Fiji disease than on cultivars moderately resistant and resistant to Fiji disease. The number of R saccharicida adults, nymphs and oviposition sites per plant increased with the increase in the Fiji disease susceptibility. The results suggest that under low vector density, cultivar preference by the planthopper vector mediates Fiji disease resistance in sugarcane. To obtain resistance ratings in the glasshouse that reflect field resistance, glasshouse-screening trials should be conducted under both low and high vector densities, and the cultivar preference of the planthopper vector recorded along with Fiji disease incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiji leaf gall (FLG) is an important virally induced disease in Australian sugarcane. It is confined to southern canegrowing areas, despite its vector, the delphacid planthopper Perkinsiella saccharicida, occurring in all canegrowing areas of Queensland and New South Wales. This disparity between distributions could be a result of successful containment of the disease through quarantine and/or geographical barriers, or because northern Queensland populations of Perkinsiella may be poorer vectors of the disease. These hypotheses were first tested by investigating variation in the ITS2 region of the rDNA fragment among eastern Australian and overseas populations of Perkinsiella. The ITS2 sequences of the Western Australian P. thompsoni and the Fijian P. vitiensis were distinguishable from those of P. saccharicida and there was no significant variation among the 26P. saccharicida populations. Reciprocal crosses of a northern Queensland and a southern Queensland population of P. saccharicida were fertile, so they may well be conspecific. Single vector transmission experiments showed that a population of P. saccharicida from northern Queensland had a higher vector competency than either of two southern Queensland populations. The frequency of virus acquisition in the vector populations was demonstrated to be important in the vector competency of the planthopper. The proportion of infected vectors that transmitted the virus to plants was not significantly different among the populations tested. This study shows that the absence of FLG from northern Queensland is not due to a lack of vector competency of the northern population of P. saccharicida.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiji leaf gall (FLG) caused by Sugarcane Fiji disease virus (SCFDV) is transmitted by the planthopper Perkinsiella saccharicida. FLG is managed through the identification and exploitation of plant resistance. The glasshouse-based resistance screening produced inconsistent transmission results and the factors responsible for that are not known. A series of glasshouse trials conducted over a 2-year period was compared to identify the factors responsible for the erratic transmission results. SCFDV transmission was greater when the virus was acquired by the vector from a cultivar that was susceptible to the virus than when the virus was acquired from a resistant cultivar. Virus acquisition by the vector was also greater when the vector was exposed to the susceptible cultivars than when exposed to the resistant cultivar. Results suggest that the variation in transmission levels is due to variation in susceptibility of sugarcane cultivars to SCFDV used for virus acquisition by the vector.