943 resultados para Periodic pinning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using numerical simulations, we analyze the anisotropy effects in the critical currents and dynamical properties of vortices in a thin superconducting film submitted to hexagonal and Kagomé periodical pinning arrays. The calculations are performed at zero temperature, for transport currents parallel and perpendicular to the main axis of the lattice, and parallel to the diagonal axis of the rhombic unit cell. We show that the critical currents and dynamic properties are anisotropic for both pinning arrays and all directions of the transport current. The anisotropic effects are more significant just above the critical current and disappear with higher values of current and both pinning arrays. The dynamical phases for each case and a wide range of transport forces are analyzed. © 2012 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical current and melting temperature of a vortex system are analyzed. Calculations are made for a two-dimensional film at finite temperature with two kinds of periodic pinning: hexagonal and Kagomé. A transport current parallel and perpendicular to the main axis of the pinning arrays is applied and molecular dynamics simulations are used to calculate the vortex velocities to obtain the critical currents. The structure factor and displacements of vortices at zero transport current are used to obtain the melting temperature for both pinning arrays. The critical currents are higher for the hexagonal pinning lattice and anisotropic for both pinning arrays. This anisotropy is stronger with temperature for the hexagonal array. For the Kagomé pinning lattice, our analysis shows a multi stage phase melting; that is, as we increase the temperature, each different dynamic phase melts before reaching the melting temperature. Both the melting temperature and critical currents are larger for the hexagonal lattice, indicating the role for the interstitial vortices in decreasing the pinning strength. © 2012 Springer Science+Business Media New York.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Using molecular dynamics simulations, we analyze the effects of artificial periodic arrays of pinning sites on the critical current of superconducting thin films as a function of vortex density. We analyze two types of periodic pinning array: hexagonal and Kagomé. For the Kagome pinning network we make calculations using two directions of transport current: along and perpendicular to the main axis of the lattice. Our results show that the hexagonal pinning array presents higher critical currents than the Kagomé and random pinning configuration for all vortex densities. In addition, the Kagomé networks show anisotropy in their transport properties. © 2012 Springer Science+Business Media, LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyze the vortex dynamics in superconducting thin films with a periodic array of pinning centers. In particular, we study the effect of anisotropy for a Kagomé pinning network when longitudinal and transverse transport currents are applied. By solving the equations of motion for the vortex array numerically at zero temperature, we find different phases for the vortex dynamics, depending on the pinning and driving force. An unusual sequence of peaks for driving force along and perpendicular to the main lattice axes is observed for the differential resistance, reflecting the anisotropy of the transport properties and the complex behavior of the vortex system. This behavior may be understood in terms of interstitial pinning vacancies, which create channels of vortices with different pinning strengths. © 2012 Springer Science+Business Media, LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We suggest a local pinning feedback control for stabilizing periodic pattern in spatially extended systems. Analytical and numerical investigations of this method for a system described by the one-dimensional complex Ginzburg-Landau equation are carried out. We found that it is possible to suppress spatiotemporal chaos by using a few pinning signals in the presence of a large gradient force. Our analytical predictions well coincide with numerical observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term loss of soil C stocks under conventional tillage and accrual of soil C following adoption of no-tillage have been well documented. No-tillage use is spreading, but it is common to occasionally till within a no-till regime or to regularly alternate between till and no-till practices within a rotation of different crops. Short-term studies indicate that substantial amounts of C can be lost from the soil immediately following a tillage event, but there are few field studies that have investigated the impact of infrequent tillage on soil C stocks. How much of the C sequestered under no-tillage is likely to be lost if the soil is tilled? What are the longer-term impacts of continued infrequent no-tillage? If producers are to be compensated for sequestering C in soil following adoption of conservation tillage practices, the impacts of infrequent tillage need to be quantified. A few studies have examined the short-term impacts of tillage on soil C and several have investigated the impacts of adoption of continuous no-tillage. We present: (1) results from a modeling study carried out to address these questions more broadly than the published literature allows, (2) a review of the literature examining the short-term impacts of tillage on soil C, (3) a review of published studies on the physical impacts of tillage and (4) a synthesis of these components to assess how infrequent tillage impacts soil C stocks and how changes in tillage frequency could impact soil C stocks and C sequestration. Results indicate that soil C declines significantly following even one tillage event (1-11 % of soil C lost). Longer-term losses increase as frequency of tillage increases. Model analyses indicate that cultivating and ripping are less disruptive than moldboard plowing, and soil C for those treatments average just 6% less than continuous NT compared to 27% less for CT. Most (80%) of the soil C gains of NT can be realized with NT coupled with biannual cultivating or ripping. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Popular wireless network standards, such as IEEE 802.11/15/16, are increasingly adopted in real-time control systems. However, they are not designed for real-time applications. Therefore, the performance of such wireless networks needs to be carefully evaluated before the systems are implemented and deployed. While efforts have been made to model general wireless networks with completely random traffic generation, there is a lack of theoretical investigations into the modelling of wireless networks with periodic real-time traffic. Considering the widely used IEEE 802.11 standard, with the focus on its distributed coordination function (DCF), for soft-real-time control applications, this paper develops an analytical Markov model to quantitatively evaluate the network quality-of-service (QoS) performance in periodic real-time traffic environments. Performance indices to be evaluated include throughput capacity, transmission delay and packet loss ratio, which are crucial for real-time QoS guarantee in real-time control applications. They are derived under the critical real-time traffic condition, which is formally defined in this paper to characterize the marginal satisfaction of real-time performance constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer through the attics of buildings under realistic thermal forcing has been considered in this study. A periodic temperature boundary condition is applied on the sloping walls of the attic to show the basic flow features in the attic space over diurnal cycles. The numerical results reveal that, during the daytime heating stage, the flow in the attic space is stratified; whereas at the night-time cooling stage, the flow becomes unstable. A symmetrical solution is seen for relatively low Rayleigh numbers. However, as the Ra gradually increases, a transition occurs at a critical value of Ra. Above this critical value, an asymmetrical solution exhibiting a pitchfork bifurcation arises at the night-time. It is also found that the calculated heat transfer rate at the night-time cooling stage is much higher than that during the daytime heating stage.